Операция дисконтирования необходима для того чтобы определить. Операции наращения и дисконтирования. Логика операций дисконтирования, наращения капитала

Логика построения основных алгоритмов по решению инвестиционных задач достаточно проста и основана на следующей идее. Простейшим видом финансовой сделки является однократное предоставление в долг некоторой суммы РV с условием, что через некоторое время t будет возвращена большая сумма FV. Как известно, результативность подобной сделки может быть охарактеризована двояко: либо с помощью абсолютного показателя - прироста (FV – PV), либо путем расчета некоторого относительного показателя. Абсолютные показатели чаще всего не подходят для подобной оценки ввиду их несопоставимости в пространственно-временном аспекте. Поэтому пользуются специальным коэффициентом - ставкой. Этот показатель рассчитывается как отношение приращения исходной суммы к базовой величине, и качестве которой, очевидно, можно взять либо PV, либо FV. Таким образом, ставка рассчитывается по одной из двух формул:

В финансовых вычислениях первый показатель имеет еще названия "процентная ставка", а второй - "учетная ставка", "дисконтная ставка". Оба показателя могут выражаться либо в долях единицы, либо в процентах. Различие в этих формулах состоит в том, какая величина берется за базу сравнения.

Как же соотносятся между собой эти показатели? Очевидно, что r t >d t , а степень расхождения зависит от уровня процентных ставок, имеющих место в конкретный момент времени. Так, если r t = 8%, а d t = 7,4%, то расхождение сравнительно невелико; если r t = 80%, то d t = 44,4%, т.е. ставки существенно различаются по величине.

В прогнозных расчетах (например, при оценке инвестиционных проектов), обычно имеют дело с процентной ставкой. Как правило, расчеты проводится в относительно стабильной экономике, когда уровни процентных ставок невелики и сравнительно предсказуемы в том смысле, что их значения не могут измениться в несколько раз. Если вероятна значительная вариабельность процентных ставок, должны применяться другие методы анализа и принятия решений, основанные главным образом на неформализованных критериях.

Процесс, в котором заданы исходная сумма и ставка, в финансовых вычислениях называется процессом наращения, искомая величина - наращенной суммой, а используемая в операции ставка - ставкой наращения. Процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и ставка, называется процессом дисконтирования, искомая величина - приведенной суммой, а используемая в операции ставка - ставкой дисконтирования. В первом случае речь о движении денежного потока от настоящего к будущему, во втором – о движении от будущего к настоящему.

Пример 4. Предприятие получило кредит на один год в размере 500 тыс.руб с условием возврата 1000 тыс. руб. В этом случае процентная ставка равна 100%, а дисконт - 50%:



В практике финансово-экономических расчетов часто требует определить будущую стоимость размещенных средств, но и решать обратную задачу: по сумме будущих размещенных средств определять требуемые суммы вложений, то есть осуществлять процесс дисконтирования.

В этих расчетах величина РV называется приведенной современной стоимостью суммы РV, а при операции наращения сумма FV выступает как будущая стоимость величины РV.

Следует иметь в виду, что привести стоимость денег можно к любому нужному моменту времени, а не обязательно к началу финансовой операции. Кроме того, с помощью дисконтирования определяют современную стоимость денег независимо от того, действительно ли совершалась кредитная операция и можно ли считать дисконтируемую сумму буквально наращенной.

Из формул наращения процентов производится обратное действие, или расчет денежных средств, предоставляемых в долг (величины РV). Такой способ начисления дохода называется математическим дисконтированием.

На практике подобные расчеты встречаются не часто. Например, для определения суммы капитала, которую нужно инвестировать под определенные проценты, чтобы получить требуемую сумму денег, а также чтобы начислить проценты, удерживаемые вперед при выдаче ссуды.

Пример 5. Ставка размещения краткосрочных денежных ресурсов для банков на 3 суток составляет 28% годовых. Какой объем средств необходимо разместить, чтобы в результате операции поступило 1,5 млн руб. (точные проценты).

Пример 6. Подлежащая возврату сумма долга - 10 млн руб. Определить сумму начисленных процентов, если срок ссуды 1 год, декурсивная ставка процентов 30% годовых.

Наиболее часто при анализе эффективности инвестиционных проектов проводят расчеты по дисконтированию с использованием сложной ставки процентов:

Пример 7. Определим сколько необходимо вложить денег в проект, будущая стоимость которого через 10 лет составит 200 млн.руб. Ставка дисконтирования за период составит 20%.

Пример 8. Ежегодно в конце года в течении 4 лет на счет поступают 50 тыс.руб. Определим будущую стоимость, если ежегодно в конце года осуществляется начисление сложных процентов при ставке 10%.

Наращенные отдельные платежи представляют геометрическую прогрессию. Тогда будущую стоимость можно определить по формуле:

Если вложения осуществляются чаще или реже, чем один раз в год, то формула модернизируется следующим образом:

n – количество платежей в год

j – ставка процентов

m – количество раз начисления процентов

Пример 9. Для погашения задолженности единовременным платежом через два года должником в кредитном учреждении создается погасительный фонд, в котором постепенно накапливаются достаточные для этого средства. Определим размер равных взносов в конце полугодия для создания через три года погасительного фонда в размере 500 млн.руб. Проценты на созданный фонд начисляются ежеквартально исходя из годовой ставки 26%.

Операции наращения и дисконтирования являются основами финансовой математики. Они применяются как в бизнесе, так и в обычной жизни, например, при оформлении депозитного вклада или потребительского кредита. Используя эти показатели, можно рассчитывать стоимость будущих денег на данный момент или сегодняшних средств в будущем. Такие операции являются основой финансового анализа инвестиционных инициатив.

Большинство из нас сталкивалось с понятием банковского процента при размещении денег на депозитном счету и просчитывало, какой пассивный доход удастся получить, благодаря удачному вложению. Дисконтированием в быту пользуются гораздо реже, его основная сфера применения – бизнес. Операции наращивания и дисконтирования, по сути, схожи между собой, но имеют разную направленность во времени:

  • наращение направлено в будущее и показывает цену сегодняшним деньгам через определенное время;
  • дисконтирование имеет обратный вектор и характеризует цену ожидаемых прибылей по состоянию на сегодняшний день с учетом дисконта.

Основным элементом, отражающим временной фактор, выступает процентная ставка. Ее можно понимать как цену за использование денег, взятых взаймы.

Ставка в финансовом менеджменте применяется как норма доходности проводимых операций. Она исчисляется в процентах или долях единицы в результате деления полученного дохода на объем инвестированных средств.

Проценты бывают двух видов:

  • Декурсивные (обычные). Они выплачиваются в конце установленного договором периода. Применяются при страховании, а также оформлении депозитов и кредитов.
  • Антисипативные (авансовые). Они начисляются на начальной стадии установленного временного отрезка относительно количества денег, которое ожидается в конце (с учетом процентов), и выплачиваются получателем сразу при оформлении кредита. Используются в расчетах с иностранными контрагентами, а также при работе с ценными бумагами дисконтированными.

Рыночная экономика дает возможность частным инвесторам, инвестиционным компаниям или предприятиям разместить свободные деньги на условиях возвратности, платности и срочности, преследуя такие цели:

Если известны начальная и конечная сумма, а также период вложения, то по формулам можно рассчитать значения дисконтной и процентной ставок. Например, известно, что предприниматель взял трехлетний кредит на 300 тысяч рублей, а в конце должен возвратить банку 400 тысяч рублей:

r = (FV - PV) / PV * n = (400 - 300) / 300 * 3 = 100 / 900 = 0,11, то есть 11%.

d = (FV - PV) / FV * n = (400 - 300) / 400 * 3 = 100 / 1200 = 0,08, то есть 8%.

Всегда существуют предприниматели или компании, которые нуждаются в деньгах для развития своего бизнеса, они готовы платить за предоставленную им ссуду. С другой стороны, имеются учреждения или организации, готовые за плату предоставить необходимый ресурс. Важно только понимать, на какое время, и на каких условиях можно брать деньги в долг, чтобы остаться в выигрыше. Именно для прогнозирования процессов такого роды и применяются методы наращения и дисконтирования.

Метод наращивания капитала

Наращивание (компаундирование) представляет собой увеличение начальной суммы (PV, Present Value) капитала за счет прибавления к ней через определенное время процентов как следствие какой-то финансовой операции. После этого можно увидеть итоговую сумму (FV, Future Value).

Определяют две разновидности процентов:

  • Простые, когда начисление вознаграждения производится один раз в конце срока вклада. Обычно они применяются в краткосрочных операциях (длительностью до одного года), по окончании срока которых нужно снимать всю сумму вместе с пассивным доходом, а при необходимости снова вкладывать ее и оформлять все заново.
  • Сложные, когда при расчете выгоды от каждого временного отрезка, учитываются уже начисленные на начальную сумму проценты за предыдущий временной отрезок. Такая методика характерна для долгосрочных вкладов.

Формула простых процентов имеет такой вид:

FV = PV * (1 + r* n)

  • r – процентная ставка;
  • n – количество периодов времени.

Просчитаем наращение по простым процентам при вкладе 20 тысяч рублей сроком на 1 год по ставке 7% годовых:

FV = 20000 * (1 + 0,07 * 1) = 21400

Таким образом, сумма начисленных процентов за год составит 1400 рублей. Если на тех же условиях положить деньги на 3 года, то получим такой результат:

FV = 20000 * (1 + 0,07 * 3) = 24200 рублей.

Теперь рассмотрим вариант, при котором те же деньги вкладывают на 3 года под аналогичный процент с начислением вознаграждения ежегодно. Здесь можно применить формулу сложных процентов:

FVn = PV (1 + r) n

FV1 = FV1 + FV1 * r = PV (1 + r) = 20000 (1 + 0,07) = 21400 ;

FV2 = FV2 + FV2 * r = PV (1 + r)2 = 20000 (1 + 0,07)2 = 22898 ;

FV3 = FV3 + FV3 * r = PV (1 + r)3 = 20000 (1 + 0,07)3 = 2450 0

Из наших вычислений можно увидеть, что наращение с применением сложных процентов за 3 года составит 4501 рубль. Вспомним, что если бы речь шла о простых процентах, то вкладчик получил бы несколько меньшую сумму. Разница составляет 300 рублей (24500 - 24200). На первый взгляд, это совсем немного, однако когда речь идет о крупных вкладах это различие становится существенным.

Если же по условиям договора начисление процентов производится чаще, чем раз в году (ежеквартально или ежемесячно), то наращивание первоначальной суммы идет более высокими темпами. Чем чаще период начисления, тем быстрее растет вложенный капитал.

Метод дисконтирования капитала

Понятие дисконтирования является важнейшим элементом оценки и анализа денежных потоков, возникающих в результате инвестирования финансов в любые начинания. Использование дисконтирования при совершении сделок и заключении договоров дает возможность собственникам избежать убытков и заработать на своих вложениях.

Дисконтирование – это механизм приведения будущей стоимости средств к состоянию на момент расчета. Он дает возможность, зная размер конечной суммы FV, найти величину суммы PV, которую следует вложить. Примерами дисконтирования могут служить такие случаи:

  • При оформлении депозита клиент хочет знать, сколько ему необходимо денег положить на счет, чтобы через 3 года у него было 400 тысяч рублей.
  • При получении ссуды клиент сразу должен выплатить проценты за ее использование, такая сделка носит название учет, а проценты в таком случае называют дисконтом.
  • При покупке векселя раньше наступления времени его оплаты (учет векселя). В этом случае банк выплачивает держателю сумму, которая меньше номинала, а разница между номиналом и реально полученной суммой называется дисконтом.

Поскольку дисконтирование и наращение, по сути, являются зеркальным отражением друг друга, то формула дисконтирования легко находится путем преобразования формулы наращивания:

PV = FV * 1/(1 + r) n

Ставка дисконтирования (d) и процентная ставка (r) взаимосвязаны между собой соотношениями, которые можно выразить таким образом:

d = r * (PV / FV) – определяется относительно начальной суммы

r = d * (FV / PV) – определяется относительно наращенного денежного показателя.

Решим несложную задачу. Человек желает купить новую модель автомобиля, которая выйдет на рынок через 3 года. Заявленная производителем ориентировочная стоимость автомобиля составляет 22 тысячи долларов. Необходимо найти, сколько денег требуется положить на депозит сейчас при ставке 7% годовых, чтобы через три года выйти на искомый показатель. Подставляем исходные данные в формулу дисконтирования:

PV = 22000 * 1 / (1 + 0,07) 3 = 22000 * 1 / 1,225 = 22000 * 0,8163 = 17959

Для выхода на показатель 22000 долларов, сегодня под 7% годовых следует вложить 17959 долларов.

В нашем случае все достаточно очевидно, поскольку размер процентной ставки известен заранее. Гораздо сложнее определить значение этого критерия в случае оценки инвестиционного предложения. В этом случае ставка определяется различными методами, в которых используются такие показатели, как средний банковский процент, величина активов компании, размер и рентабельность капитала, размер дивидендов по ценным бумагам, потенциальные риски. Кроме того, учитывается темп инфляции и общеэкономические ожидания.

Простейшим видом финансовой сделки является однократное предоставление в долг некоторой суммы PV с условием, что через некоторое время t будет возвращена большая сумма FV. Как известно, результативность подобной сделки может быть охарактеризована двояко: либо с помощью абсолютного показателя - прироста (FV - PV), либо путем расчета некоторого относительно показателя. Абсолютные показатели чаще всего не подходят для подобной оценки ввиду их несопоставимости в пространственно-временном аспекте. Поэтому пользуются специальным коэффициентом - ставкой.

Этот показатель рассчитывается отношением приращения исходной суммы к базовой величине, в качестве которой можно брать либо PV либо FV. Таким образом, ставка рассчитывается по одной из двух формул:

темп прироста ("процентная ставка ", "процент ", "рост ", "ставка процента ", "норма прибыли ", "доходность ")

темп снижения (учетная ставка ", "дисконт ", "коэффициент дисконтирования ")

Очевидно, что обе ставки взаимосвязаны, т.е. зная один показатель, можно рассчитать другой:

Оба показателя могут выражаться либо в долях единицы, либо в процентах. Различие в этих формулах состоит в том, какая величина берется за базу сравнения: в формуле (Матем. 1) - исходная сумма, в формуле (Матем. 2) - возвращаемая сумма.

Очевидно, что r t > d t, а степень расхождения зависит от уровня процентных ставок, имеющих место в конкретный момент времени.

В прогнозных расчетах, например, при оценке инвестиционных проектов, как правило имеют дело с процентной ставкой, хотя обычно это не оговаривается. Объяснение этому может быть, например, таким.

1) Во-первых, анализ инвестиционных проектов, основанный на формализованных алгоритмах, может выполняться лишь в относительно стабильной экономике, когда уровни процентных ставок невелики и сравнительно предсказуемы в том смысле, что их значения не могут измениться в несколько раз или на порядок. Если вероятна значительная вариабельность процентных ставок, должны применяться другие методы анализа и принятия решений, основанные, главным образом, на неформализованных критериях. При разумных значениях ставок расхождения между процентной и дисконтной ставками, как мы видели, относительно невелики и потому в прогнозных расчетах вполне может быть использована любая из них.

2) Во-вторых, прогнозные расчеты не требуют какой-то повышенной точности, поскольку результатами таких расчетов являются ориентиры, а не "точные" оценки. Поэтому, исходя из логики подобных расчетов, предполагающих их многовариантность, а также использование вероятностных оценок и имитационных моделей, излишняя точность не требуется.

Итак, в любой простейшей финансовой сделке всегда присутствуют три величины, две из которых заданы, а одна является искомой.

Процесс, в котором заданы исходная сумма и процентная ставка, в финансовых вычислениях называется процессом наращения . Процесс, в котором заданы ожидаемая в будущем к получению (возвращаемая) сумма и коэффициент дисконтирования, называется процессом дисконтирования . В первом случае речь идет о движении денежного потока от настоящего к будущему, во втором - о движении от будущего к настоящему (см. рис.).


Экономический смысл финансовой операции, задаваемой формулой (Матем. 1), состоит в определении величины той суммы, которой будет или желает располагать инвестор по окончании этой операции. Поскольку из формулы (Матем. 1):

то видно, что время генерирует деньги.

Величина FV показывает как бы будущую стоимость "сегодняшней" величины PV при заданном уровне доходности.

Экономический смысл дисконтирования заключается во временном упорядочении денежных потоков различных временных периодов. Коэффициент дисконтирования показывает, какой ежегодный процент возврата хочет (или может) иметь инвестор на инвестируемый им капитал. В этом случае искомая величина PV показывает как бы текущую, "сегодняшнюю" стоимость будущей величины FV.

Предыдущая

Операции наращения и дисконтирования являются основами финансовой математики. Они применяются как в бизнесе, так и в обычной жизни, например, при оформлении депозитного вклада или потребительского кредита. Используя эти показатели, можно рассчитывать стоимость будущих денег на данный момент или сегодняшних средств в будущем. Такие операции являются основой финансового анализа инвестиционных инициатив.

Большинство из нас сталкивалось с понятием банковского процента при размещении денег на депозитном счету и просчитывало, какой пассивный доход удастся получить, благодаря удачному вложению. Дисконтированием в быту пользуются гораздо реже, его основная сфера применения – бизнес. Операции наращивания и дисконтирования, по сути, схожи между собой, но имеют разную направленность во времени:

  • наращение направлено в будущее и показывает цену сегодняшним деньгам через определенное время;
  • дисконтирование имеет обратный вектор и характеризует цену ожидаемых прибылей по состоянию на сегодняшний день с учетом дисконта.

Основным элементом, отражающим временной фактор, выступает процентная ставка. Ее можно понимать как цену за использование денег, взятых взаймы.

Ставка в финансовом менеджменте применяется как норма доходности проводимых операций. Она исчисляется в процентах или долях единицы в результате деления полученного дохода на объем инвестированных средств.

Проценты бывают двух видов:

  • Декурсивные (обычные). Они выплачиваются в конце установленного договором периода. Применяются при страховании, а также оформлении депозитов и кредитов.
  • Антисипативные (авансовые). Они начисляются на начальной стадии установленного временного отрезка относительно количества денег, которое ожидается в конце (с учетом процентов), и выплачиваются получателем сразу при оформлении кредита. Используются в расчетах с иностранными контрагентами, а также при работе с ценными бумагами дисконтированными.

Рыночная экономика дает возможность частным инвесторам, инвестиционным компаниям или предприятиям разместить свободные деньги на условиях возвратности, платности и срочности, преследуя такие цели:

  • гарантирование сохранности своих финансовых ресурсов от обесценивания, вызванного инфляционными процессами;
  • получение дополнительного дохода (курсового, дисконтного или процентного).

Если известны начальная и конечная сумма, а также период вложения, то по формулам можно рассчитать значения дисконтной и процентной ставок. Например, известно, что предприниматель взял трехлетний кредит на 300 тысяч рублей, а в конце должен возвратить банку 400 тысяч рублей:

r = (FV - PV) / PV * n = (400 - 300) / 300 * 3 = 100 / 900 = 0,11, то есть 11%.

d = (FV - PV) / FV * n = (400 - 300) / 400 * 3 = 100 / 1200 = 0,08, то есть 8%.

Всегда существуют предприниматели или компании, которые нуждаются в деньгах для развития своего бизнеса, они готовы платить за предоставленную им ссуду. С другой стороны, имеются учреждения или организации, готовые за плату предоставить необходимый ресурс. Важно только понимать, на какое время, и на каких условиях можно брать деньги в долг, чтобы остаться в выигрыше. Именно для прогнозирования процессов такого роды и применяются методы наращения и дисконтирования.

Метод наращивания капитала

Наращивание (компаундирование) представляет собой увеличение начальной суммы (PV, Present Value) капитала за счет прибавления к ней через определенное время процентов как следствие какой-то финансовой операции. После этого можно увидеть итоговую сумму (FV, Future Value).

Определяют две разновидности процентов:

  • Простые, когда начисление вознаграждения производится один раз в конце срока вклада. Обычно они применяются в краткосрочных операциях (длительностью до одного года), по окончании срока которых нужно снимать всю сумму вместе с пассивным доходом, а при необходимости снова вкладывать ее и оформлять все заново.
  • Сложные, когда при расчете выгоды от каждого временного отрезка, учитываются уже начисленные на начальную сумму проценты за предыдущий временной отрезок. Такая методика характерна для долгосрочных вкладов.

Формула простых процентов имеет такой вид:

FV = PV * (1 + r* n)

  • r – процентная ставка;
  • n – количество периодов времени.

Просчитаем наращение по простым процентам при вкладе 20 тысяч рублей сроком на 1 год по ставке 7% годовых:

FV = 20000 * (1 + 0,07 * 1) = 21400

Таким образом, сумма начисленных процентов за год составит 1400 рублей. Если на тех же условиях положить деньги на 3 года, то получим такой результат:

FV = 20000 * (1 + 0,07 * 3) = 24200 рублей.

Теперь рассмотрим вариант, при котором те же деньги вкладывают на 3 года под аналогичный процент с начислением вознаграждения ежегодно. Здесь можно применить формулу сложных процентов:

FVn = PV (1 + r) n

FV1 = FV1 + FV1 * r = PV (1 + r) = 20000 (1 + 0,07) = 21400 ;

FV2 = FV2 + FV2 * r = PV (1 + r)2 = 20000 (1 + 0,07)2 = 22898 ;

FV3 = FV3 + FV3 * r = PV (1 + r)3 = 20000 (1 + 0,07)3 = 2450 0

Из наших вычислений можно увидеть, что наращение с применением сложных процентов за 3 года составит 4501 рубль. Вспомним, что если бы речь шла о простых процентах, то вкладчик получил бы несколько меньшую сумму. Разница составляет 300 рублей (24500 - 24200). На первый взгляд, это совсем немного, однако когда речь идет о крупных вкладах это различие становится существенным.

Если же по условиям договора начисление процентов производится чаще, чем раз в году (ежеквартально или ежемесячно), то наращивание первоначальной суммы идет более высокими темпами. Чем чаще период начисления, тем быстрее растет вложенный капитал.

Метод дисконтирования капитала

Понятие дисконтирования является важнейшим элементом оценки и анализа денежных потоков, возникающих в результате инвестирования финансов в любые начинания. Использование дисконтирования при совершении сделок и заключении договоров дает возможность собственникам избежать убытков и заработать на своих вложениях.

Дисконтирование – это механизм приведения будущей стоимости средств к состоянию на момент расчета. Он дает возможность, зная размер конечной суммы FV, найти величину суммы PV, которую следует вложить. Примерами дисконтирования могут служить такие случаи:

  • При оформлении депозита клиент хочет знать, сколько ему необходимо денег положить на счет, чтобы через 3 года у него было 400 тысяч рублей.
  • При получении ссуды клиент сразу должен выплатить проценты за ее использование, такая сделка носит название учет, а проценты в таком случае называют дисконтом.
  • При покупке векселя раньше наступления времени его оплаты (учет векселя). В этом случае банк выплачивает держателю сумму, которая меньше номинала, а разница между номиналом и реально полученной суммой называется дисконтом.

Поскольку дисконтирование и наращение, по сути, являются зеркальным отражением друг друга, то легко находится путем преобразования формулы наращивания:

PV = FV * 1/(1 + r) n

Ставка дисконтирования (d) и процентная ставка (r) взаимосвязаны между собой соотношениями, которые можно выразить таким образом:

d = r * (PV / FV) – определяется относительно начальной суммы

r = d * (FV / PV) – определяется относительно наращенного денежного показателя.

Решим несложную задачу. Человек желает купить новую модель автомобиля, которая выйдет на рынок через 3 года. Заявленная производителем ориентировочная стоимость автомобиля составляет 22 тысячи долларов. Необходимо найти, сколько денег требуется положить на депозит сейчас при ставке 7% годовых, чтобы через три года выйти на искомый показатель. Подставляем исходные данные в формулу дисконтирования:

PV = 22000 * 1 / (1 + 0,07) 3 = 22000 * 1 / 1,225 = 22000 * 0,8163 = 17959

Для выхода на показатель 22000 долларов, сегодня под 7% годовых следует вложить 17959 долларов.

В нашем случае все достаточно очевидно, поскольку размер процентной ставки известен заранее. Гораздо сложнее определить значение этого критерия в случае оценки инвестиционного предложения. В этом случае ставка определяется различными методами, в которых используются такие показатели, как средний банковский процент, величина активов компании, размер и рентабельность капитала, размер дивидендов по ценным бумагам, потенциальные риски. Кроме того, учитывается темп инфляции и общеэкономические ожидания.

Операции наращения и дисконтирования.

Концепция стоимости денег во времени.

Временная ценность денежных вложений относится к одной из основных концепций, используемых в инвестиционном анализе. Необходимость учета временного фактора заставляет особое внимание уделять оценке базовых финансовых показателей. Разность в оценке текущих денежных средств и той же самой их суммы в будущем может быть связана с:

§ негативным воздействием инфляции, в связи с чем происходит уменьшение покупательной способности денег;

§ возможностью альтернативного вложения денежных средств и их реинвестирования в будущем (фактор упущенной выгоды);

§ ростом риска, связанного с вероятностью невозврата инвестированных средств (чем длительнее срок вложения капитала, тем выше степень риска);

§ потребительскими предпочтениями (лучше получить меньше доход в ближайшем периоде, чем ожидать большее, но в отдаленной перспективе).

В планируемом периоде анализ предстоящей реализации различного вида инвестиционных проектов может осуществляться по двум противоположным направлениям. С одной стороны, определяется будущая стоимостная оценка первоначальной величины инвестиций и доходов (дивидендов, процентов, прибыли, денежных потоков и пр.), полученных в результате осуществления этих капиталовложений. С другой стороны, приращенные в ходе инвестирования денежные средства оцениваются с позиции их текущей (настоящей) стоимости. В соответствии с этим в финансово-инвестиционном анализе используются операции дисконтирования и наращения капитала. Принципиальная схема инвестиционного анализа, осуществляемого с учетом временной ценности денежных вложений, представлена на рис. 1.

Рис. 1. Схема проведения инвестиционного анализа с использованием операций наращения и дисконтирования капитала

Операции наращения и дисконтирования.

При разработке оптимальных финансовых решений в определенных ситуациях требуется проведение оценки будущей стоимости инвестированных денежных средств. Нахождение будущей стоимости денежных средств по истечении одного периода времени и при известном значении темпа их прироста осуществляется по формуле

где FV 1 - будущая стоимость денежных средств в конце первого периода инвестирования (t=1), тыс. руб.;

РV - первоначальная (принципиальная) сумма денежных средств, инвестированных в начальный период времени (t = 0), тыс. руб.;

Процесс, в котором при заданных значениях PV и r необходимо найти величину будущей стоимости инвестированных средств к концу определенного периода времени (n) называется операцией наращения. В практике инвестиционного анализа «темп прироста» денежных средств принято называть «процентом», «ставкой процента» или «нормой рентабельности», а первоначальную сумму денежных средств - «текущей стоимостью» (РV).

Из предыдущей зависимости FV 1 от РV темп прироста денежных средств исчисляется по формуле:

Оценка будущей стоимости денежных вложений, инвестированных на срок более одного периода времени, - более сложная задача. Ответ на вопрос, какой будет будущая стоимость денежных средств в n -й период времени, зависит от того, простой или сложный процент будет применяться в расчетах. Использование простого процента (simple interest) свидетельствует о том, что инвестор будет получать доход (наращивать капитал) только с принципиальной суммы начальных инвестиций в течение всего срока реализации проекта. В противоположность данному подходу использование сложного процента (compound interest) говорит о том, что полученный доход (проценты, дивиденды или пр.) периодически добавляется к сумме начальной инвестиции, в результате помимо первоначальной суммы денежных средств процент берется также из накопленной в предыдущих периодах суммы процентных платежей или любого другого вида доходов. В математическом исчислении операция наращения с использованием сложных процентов к концу второго периода реализации проекта определяется по формуле

В конце n-гo периода времени будущая стоимость денежных средств (FV n) исчисляется по формуле:

Данная формула расчета FV n является базовой в инвестиционном анализе. Для облегчения процедуры нахождения показателя FV n предварительно рассчитывается величина множителя (1+r) n при различных значениях r и n. В этом случае FV n находим по формуле:

где FVIFr,n - фактор (множитель) будущей стоимости денежных вложений, коэф.

В инвестиционном анализе под стандартным временным интервалом принято рассматривать один год. В случае же, когда дополнительно оговаривается частота выплаты процентов по вложенным средствам в течение года, формула расчета будущей стоимости инвестированного капитала может быть представлена в следующем виде:

где r - годовая процентная ставка, коэф.;

m - количество начислений в году, ед.;

n - срок вложения денежных средств, год.

Начисление процентов (дивидендов или др.) может осуществляться ежедневно, ежемесячно, поквартально, один раз в полугодие и один раз в год. Характерно, что чем больше количество раз в течение года будут начисляться проценты, тем больше будет FV в конце n-го периода времени. Для целей анализа отношение r/m принято рассматривать в качестве процентной ставки, а произведение - n∙m в качестве срока инвестирования. Этот случай соответствует следующей экономической ситуации.

Пример. Коммерческая организация приняла решение инвестировать на пятилетний срок свободные денежные средства в размере 30 тыс. руб. Имеются три альтернативных варианта вложений. По первому варианту средства вносятся на депозитный счет банка с ежегодным начислением сложных процентов по ставке 20 % годовых. По второму варианту средства передаются сторонней организации в качестве займа, при этом на переданную в долг сумму ежегодно начисляется 25 %. По третьему варианту средства помещаются на депозитный счет коммерческого банка с начислением сложных процентов по ставке 16 % годовых ежеквартально. Если не учитывать уровень риска, наилучший вариант вложения денежных средств может быть определен при помощи показателя FV n . По варианту I: FV n = 30 тыс. руб. × (1+0,2) 5 = 74,7 тыс. руб. По варианту II: FV n = 30 тыс. руб. + 5 × (30 тыс. руб. × 0,25) = 67,5 тыс. руб. По варианту III: FV n - 30 тыс. руб. × (1+0,16/4) 5∙4 = 65,7 тыс. руб. В данных условиях первый вариант более предпочтителен для предприятия.

Наращение денежных средств имеет максимальное (предельное) значение, когда интервал наращения становится бесконечно малым (количество начислений в году стремится к бесконечности). В этом случае показатель FV n определяется по формуле:



FV n = PV∙e r ∙ n

где е - трансцендентное число е, равное 2,718281...(постоянная величина).

В финансовых расчетах должна учитываться инфляция, тем более если она значительна. С одной стороны, сумма, положенная, например, на депозит, получит приращение, а с другой - утратит свою реальную стоимость в результате инфляции. Для определения наращенной суммы с учетом инфляции используют алгоритм:

где - будущая стоимость денежных средств c учетом инфляции в конце n-ого периода инвестирования, тыс. руб.;

РV - первоначальная (принципиальная) сумма денежных средств, инвестированных в начальный период времени, тыс. руб.;

r - темп прироста денежных средств, коэф.

m - число начислений в году;

h - ожидаемый месячный темп инфляции;

n - число месяцев.

Пример. Предположим, что на депозит положена сумма 1000 тыс. руб. Номинальная годовая банковская ставка равна 16%. Сложные проценты начисляются каждый месяц, т.е. годовая номинальная ставка применяется 12 раз в году (m). Ожидаемый месячный темп инфляции равен 10%. Определим наращенную сумму (с учетом инфляции) через 5 месяцев, а также эрозию капитала (ЭК), или уменьшение реальной стоимости суммы, положенной на депозит :

Эрозия капитала составит: 663,2 тыс. руб. - 1000 тыс. руб. = - 336,8 тыс. руб.

Как и в случае с наращением капитала, для оптимального принятия финансовых решений чрезвычайно важно знать и учитывать в анализе временной интервал дисконтирования. Если начисление процентов планируется (или произошло) более одного раза в год, формулу для нахождения РV необходимо представлять в следующем виде:

Возможности практического использования показателя PV pacкрываются в различных экономических ситуациях, когда возникает необходимость обоснования финансово-инвестиционных решений с учетом временной ценности денежных вложений.

Одна из типичных ситуаций в инвестиционной деятельности хозяйствующих субъектов представлена ниже.

Пример. Коммерческая организация планирует приобрести помещения под склад и офис. Эксперты оценивают будущую стоимость недвижимости в размере 10 млн. руб. По банковским депозитным счетам установлены ставки в размере 18% с ежегодным начислением сложных процентов и 14% с ежеквартальным начислением сложных процентов. При помощи показателя PV можно определить, какую сумму средств необходимо поместить на банковский депозитный счет, чтобы через два года получить достаточную сумму для покупки недвижимости. Расчет оптимального варианта инвестирования осуществляется следующим образом: в первом случае PV = 10 млн руб. × (1/ 2) = 7,18 млн руб.; во втором случае РV = 10 млн. руб.∙(1/ 2 × 4) = 7,59 млн руб. Очевидно, что более выгодным для предприятия является вложение меньшей суммы средств, т.е. первый вариант.

Отношение 1/(1+r) n известно как фактор (множитель) текущей стоимости (РVIFr,n). Стандартные значения РVIFr,n могут быть найдены в специальных таблицах. Формула расчета PV уравнивает, с точки зрения инвестора, ценность денежных средств сегодня и ожидаемого к получению денежного потока в будущем.

При заданной величине дисконтной ставки текущая стоимость денежных потоков достигнет своего минимально возможного значения при непрерывном дисконтировании. В этом случае (когда m => +∞) текущая стоимость исчисляется по формуле.