Развитие высокотехнологичных отраслей промышленности в КНР и стратегия создания «национальных чемпионов. Развитие высокотехнологичных отраслей на современном этапе

1

В статье уточнён перечень отраслей обрабатывающего производства, относимых к высокотехнологичным, на основе анализа международных классификаций: Организации экономического содружества и развития (ОЭСР), Организации Объединённых наций по промышленному развитию (ЮНИДО), Росстата. Выявлены существенные отличия в перечне высокотехнологичных отраслей, используемых в ОЭСР и Росстате, снижающих возможности сравнительного международного анализа. Выявлены ведущие страны в сфере обрабатывающего производства на основе анализа распределения добавленной стоимости мировой обрабатывающей промышленности по странам мира. Анализ национальной технологической структуры обрабатывающего производства ведущих мировых экономик позволил выявить низкую долю высокотехнологичных и среднетехнологичных отраслей в России. Проведён сравнительный анализ динамики выпуска продукции в трёх из пяти высокотехнологичных отраслей, по которым доступны данные для международных сопоставлений: производство офисной техники и компьютеров; радио- и телекоммуникационного оборудования; медицинского оборудования, точных и оптических приборов за 2000–2012 гг. Информационной основой исследования послужила база данных ЮНИДО по промышленному производству в России и пяти ведущих странах (США, Китай, Япония, Германия, Южная Корея). Полученные результаты свидетельствуют о недостаточном уровне выпуска продукции высокотехнологичными отраслями в России по сравнению с ведущими странами, а также о лидирующем положении Китая в этой сфере производства с 2005 года.

высокотехнологичные виды деятельности

обрабатывающая промышленность

интенсивность затрат на исследования и разработки

классификация отраслей

экономика знаний

1. Макаров В.Л. Угроза перерождения экономики знаний под воздействием либерального рынка // Экономика региона. – 2010. – № 3. – С. 7–19.

2. Методика расчета показателей «Доля продукции высокотехнологичных и наукоемких отраслей в валовом внутреннем продукте» и «Доля продукции высокотехнологичных и наукоемких отраслей в валовом региональном продукте субъекта Российской Федерации», утверждена Приказом Росстата от 28.02.2013 № 81.

3. Просвирина И.И. Экономика знаний и современные тенденции использования труда в России / И.И. Просвирина, А.К. Тащев // Вестник ЮУрГУ. Серия «Экономика и менеджмент». – 2014. – Т. 8, № 1. – С. 73–79.

4. Руднева Л.Н. Организация и управление деятельностью бурового предприятия в условиях сервисного обслуживания. Учебное пособие. – Тюмень: ТюмГНГУ, 2010. – 166 с.

5. OECD (2014), OECD Science, Technology and Industry Outlook 2014, OECD Publishing.

6. OECD (2011), ISIC Rev. 3 Technology Intensity Definition, OECD Directorate for Science, Technology and Industry (DSTI), OECD, Paris.

7. UNIDO (United Nations Industrial Development Organization), 2013. Industrial Development Report 2013: Sustaining Employment Growth: The Role of Manufacturing and Structural Change. Vienna.

8. UNIDO Statistics Data Portal // UNIDO. URL: http://stat.unido.org/home (дата обращения 05.05.15).

Переход российской экономики от сырьевой к инновационной требует формирования целого ряда условий, в большей степени определяемых государственной политикой в сфере науки и технологий. Многие исследователи сходятся во мнении о недостаточном уровне государственного управления, тормозящем развитие экономики знаний в России . При этом не вызывает сомнений необходимость изменения структуры производства в пользу высокотехнологичного и наукоёмкого секторов, для которых характерна низкая материалоёмкость продукции, высокая производительность труда и капитала, обусловленные существенной долей интеллектуальной составляющей в продукте .

Для понимания процессов экономического развития в мире необходимо исследование тенденций в секторе высокотехнологичных и наукоёмких видов деятельности. Все лидеры мировой экономики уделяют серьёзное внимание вопросам государственной политики в области науки и технологий, результаты которой реализуются не только в виде объёмных и регулярных отчётов о достигнутом уровне, но и долгосрочных программ развития, последовательно воплощаемых в жизнь . В настоящей работе представлены результаты сравнительного анализа развития высокотехнологичного производства в России и ведущих экономиках мира. Основными источниками информации являются данные Росстата, Евростата, Организации экономического содружества и развития (ОЭСР), Организации Объединённых наций по промышленному развитию (ЮНИДО).

Высокотехнологичные отрасли как объект исследования

В высокотехнологичном секторе обрабатывающей промышленности исследования и разработки играют ведущую роль в инновационной деятельности, в то время как в других отраслях инновации основаны в большей степени на заимствовании знаний и технологий. В этой связи общепринятым критерием для группировки отраслей по принципу интенсивности применения технологий служит доля затрат на НИОКР в произведённом продукте или добавленной стоимости (интенсивность затрат на НИОКР). Соответствующая классификация отраслей разработана в ОЭСР и активно используется в большинстве стран и международных организаций . Классификация отраслей обрабатывающего производства получена на основе исследования доли затрат на НИОКР в произведённой продукции по данным 12 стран ОЭСР (США, Канада, Япония, Дания, Финляндия, Франция, Германия, Ирландия, Италия, Испания, Швеция, Великобритания) в среднем за период с 1991 по1999 год (таблица).

С учётом полученных в ОЭСР данных по интенсивности затрат на НИОКР классификация отраслей представляет собой 4-уровневую систему.

Классификация отраслей ЮНИДО основана на использовании разработок ОЭСР, однако, отличается делением отраслей на три группы: высокотехнологичный сектор включает среднетехнологичные отрасли высокого уровня. Таким образом, 3-уровневая классификация отраслей ЮНИДО предполагает выделение высокотехнологичных, среднетехнологичных и низкотехнологичных отраслей. Российская статистика опирается на классификацию ЮНИДО: «в целях обеспечения сопоставимости расчётов показателя «Доля продукции высокотехнологичных и наукоёмких отраслей в валовом внутреннем продукте» со странами-членами ОЭСР производится также расчёт международно-сопоставимого показателя , учитывающего группу среднетехнологичных высокого уровня видов экономической деятельности» .

Очевидно, что сопоставление российских статистических данных с данными стран-членов ОЭСР по развитию высокотехнологичного производства в ряде случаев будет оказываться малоинформативным в силу различий в применяемых классификациях для сбора и обобщения данных. В связи с этим необходим анализ высокотехнологичного производства без учёта среднетехнологичных отраслей высокого уровня.

Структура обрабатывающей промышленности в ведущих странах

На протяжении длительного времени перечень лидеров в сфере высокотехнологичного производства оставался достаточно стабильным, в него входили все развитые экономики мира: США, Япония, Германия, Франция, Канада, Южная Корея. В этих странах сложился и сохраняется высокий удельный вес высокотехнологичных и наукоёмких отраслей в ВВП (30-40 %). За последние 10-15 лет лидерство развитых стран в этой области (прежде всего, США, Японии и Германии) серьёзно потеснил Китай, а также (в меньшей степени) Индия, Индонезия и Турция. Происходит это на фоне общего роста объёмов обрабатывающего производства в названных странах. По данным ЮНИДО , наиболее заметно выросла доля Китая в мировой добавленной стоимости обрабатывающей промышленности (рис. 1).

Также увеличилась доля Индии и Турции. Одновременно наблюдается снижение доли развитых экономик мира, за исключением Южной Кореи. Доля России в мировой добавленной стоимости этого сектора незначительно снизилась (с 1,61 % в 2006 году до 1,49 % в 2011 году).

Анализ структуры обрабатывающей промышленности по ведущим странам за период 2006-2011 годов показывает, в целом, стабильную картину (рис. 2).

Так, высокая доля высоко- и среднетехнологичных отраслей не менялась в Японии, Германии и Тайване (53, 57 и 62 % соответственно). Повышение уровня технологичности наблюдается в США, Франции, Индии, Бразилии. В Китае и Южной Корее произошло некоторое снижение в пользу низкотехнологичных отраслей. В России доля высоко- и среднетехнологичных отраслей увеличилась с 21,9 до 23,1 %. Однако уровень технологичности российской обрабатывающей промышленности пока существенно уступает не только развитым странам, но и Китаю, Индии, Бразилии и Турции.

Классификация отраслей по степени технологичности ОЭСР

Сектор обрабатывающего производства по степени технологичности

Средняя интенсивность затрат на НИОКР, %

(1991-1999 гг.)

Высокотехнологичные отрасли:

авиакосмическая

фармацевтика

производство офисной техники и компьютеров

производство радио- и телекоммуникационного оборудования

производство медицинского оборудования, точных и оптических приборов, а также часов

Среднетехнологичные отрасли высокого уровня:

электрические машины и оборудование

автомобили, прицепы и полуприцепы

химическое производство за исключением фармацевтики

железнодорожное оборудование и транспорт

машины и оборудование, не включённые в др. группы

Среднетехнологичные отрасли низкого уровня:

судостроение и ремонт судов и лодок

производство резины, каучука и пластика

производство кокса, нефтепродуктов и ядерного топлива

производство др. минеральных продуктов (кроме металлургии)

металлургия

Низкотехнологичные отрасли:

прочие производства и переработка отходов

производство древесины, бумаги и издательская деятельность

производство продуктов питания, напитков и табака

текстильное производство, производство кожи и обуви

Все отрасли обрабатывающего производства

Примечание. Составлено по данным .

Рис. 1. Доля отдельных стран в добавленной стоимости обрабатывающих отраслей в мире (составлено на основе данных )

Результаты сравнительного анализа выпуска продукции высокотехнологичных отраслей в отдельных странах

Сравнение российского высокотехнологичного производства в настоящей работе проведено с пятью странами, доля которых в мировой обрабатывающей промышленности наиболее существенна, это США, Китай, Япония, Германия и Южная Корея. Анализ проводился на основе данных ЮНИДО , сбор которых осуществляется непосредственно при взаимодействии с национальными органами сбора и обработки статистической информации по промышленному производству в рамках Международной стандартной отраслевой классификации ISIC Rev. 3, 2-digit. Из пяти высокотехнологичных отраслей обособленные данные, представленные в свободном доступе, имеются по трём: производство офисной, вычислительной техники и компьютеров; производство радио- и телекоммуникационного оборудования; производство медицинского оборудования, точных и оптических приборов.

Отметим, что по Китаю отсутствуют данные за 2012 год, по США с 2009 года. По Японии обособленные данные по каждой из этих трёх отраслей отсутствуют с 2008 года, по Германии - с 2009 года, по Южной Корее - с 2007 года. Методика сбора данных по отраслям промышленности ЮНИДО не предполагает выделения двух других высокотехнологичных отраслей: авиакосмической промышленности и фармацевтики. В связи с этим провести анализ по этим видам деятельности не представляется возможным.

В отрасли производства медицинского оборудования, точных и оптических приборов по всем странам наблюдается положительная динамика (рис. 3).

Лидером отрасли являются США, которые увеличивают существующий значительный разрыв по объёмам выпуска с остальными странами. Второе место в отрасли в начале 2000-х годов занимает Япония, затем ненадолго (2006-2007 гг.) - Германия. С 2008 года к лидеру уверенно приближается Китай, среднегодовые темпы роста которого с 2007 по 2011 год составляют 124 %. Среднегодовой темп роста выпуска продукции этой отрасли в России составил 117 %.

В отрасли производства радио- и телекоммуникационного оборудования ситуация за рассматриваемый период кардинально изменилась (рис. 4). Два лидера начала века: Япония и США - серьёзно уступили свои позиции Китаю. Среднегодовые темпы роста Китая в этой отрасли составили 122 %. Незначительный рост наблюдается в Германии. Росстатом данные в ЮНИДО по состоянию этой отрасли в России не предоставлены.

Рис. 2. Динамика доли высоко- и среднетехнологичных отраслей в добавленной стоимости обрабатывающей промышленности (по данным )

Рис. 3. Динамика выпуска продукции в отрасли производства медицинского оборудования, точных и оптических приборов (по РФ нет данных за 2003 г.)

Рис. 4. Динамика выпуска радио- и телекоммуникационного оборудования (по РФ данные отсутствуют; по Китаю данные доступны с 2003 г.)

Рис. 5. Динамика выпуска в отрасли производства офисной техники и компьютеров (по Китаю данные по отрасли доступны с 2003 г.)

Рис. 6. Динамика суммарного выпуска трёх высокотехнологичных отраслей, рассчитано по данным (по России отсутствуют данные по отрасли производства радио- и телекоммуникационного оборудования; по Китаю до 2003 г. доступны данные только по отрасли производства медицинского оборудования, точных и оптических приборов; по Японии данные по отрасли производства офисной техники и компьютеров отсутствуют за 2006-2007 гг.)

С 2007-2009 годов Япония, Германия и Южная Корея предоставляют данные по трём рассмотренным выше отраслям агрегированно. С учётом этих данных, агрегированный выпуск продукции представлен на рис. 6.

В отрасли производства офисной, вычислительной техники и компьютеров также произошла кардинальная смена лидера (рис. 5): США и Япония, демонстрирующие падение объёмов выпуска, уступили место Китаю с его высокими темпами роста (в среднегодовом исчислении на уровне 121 %). В России развитие этой отрасли происходит неравномерно, существенные падения объёмов выпуска наблюдаются в 2003 и 2009 годах (на 57 и 36 % соответственно по отношению к предыдущему периоду). Тем не менее среднегодовые темпы роста за весь рассматриваемый период составляют 130 %. Объёмы выпуска в этой отрасли увеличились более чем в шесть раз, и показатель достиг значения 2437 млн долл. в 2012 г.

Полученные данные по трём из пяти высокотехнологичных отраслей демонстрируют появление нового лидера в этом секторе в лице Китая, динамика которого не оставляет надежды развитым странам на возвращение пальмы первенства. Заметная положительная динамика также у другой азиатской страны - Южной Кореи. В Германии этот сектор наращивал объёмы выпуска до 2007 года, однако падение после кризиса 2008 года не позволило восстановить достигнутый предкризисный уровень. Япония постепенно теряет свои позиции в этом секторе. По России данные являются не полными в связи с тем, что по отрасли производства радио- и телекоммуникационного оборудования данные не предоставлены в ЮНИДО.

Заключение

Таким образом, анализ доступных по двум высокотехнологичным отраслям данных по России, позволил выявить устойчивую положительную динамику, что позволяет считать этот сектор перспективным с точки зрения развития обрабатывающей промышленности РФ. Среднегодовые темпы роста этого сектора в России находятся на уровне 117-130 %, что превосходит показатели динамики Японии и Германии.

Однако, сохранение сложившейся тенденции не позволяет надеяться на заметное приближение к уровню лидеров (Китай, США, Япония, Германия и Южная Корея) в 10-20-летней перспективе в связи с низким абсолютным уровнем показателей выпуска продукции в высокотехнологичных отраслях. Поэтому для трансформации сырьевой структуры российской экономики требуется разработка и реализация государственных и региональных программ поддержки высокотехнологичного производства, например, с использованием налоговых льгот и государственного софинансирования инновационных проектов. Поскольку потребность в инвестициях, сроки окупаемости и риски по высокотехнологичным проектам велики, роль государства сложно переоценить в этом секторе . В свою очередь, государство вправе требовать от компаний, которым оказывается поддержка, соответствующего уровня производственно-технологической базы, исследований и разработок, квалификации персонала и других важных факторов развития высокотехнологичного производства.

Рецензенты:

Руднева Л.Н., д.э.н., профессор, зав. кафедрой экономики, организации и управления производством Тюменского государственного нефтегазового университета, г. Тюмень;

Килин П.М., д.э.н., профессор кафедры экономики, организации и управления производством Тюменского государственного нефтегазового университета, г. Тюмень.

Библиографическая ссылка

Мезенцева О.Е. РАЗВИТИЕ ВЫСОКОТЕХНОЛОГИЧНОГО ПРОИЗВОДСТВА В МИРЕ И РОССИИ // Фундаментальные исследования. – 2015. – № 7-1. – С. 176-181;
URL: http://fundamental-research.ru/ru/article/view?id=38747 (дата обращения: 23.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Авиационная промышленность и двигателестроение в России

Цель: достижение 10-15 процентного уровня мирового рынка продаж гражданской авиационной техники в 2020-2025 годах.

Приоритетные направления развития авиационной промышленности.

Первое направление - создание ряда перспективной авиационной техники и двигателей.

Второе направление - обновление авиапромышленного комплекса, в том числе развитие производственного, конструкторского и научно-исследовательского потенциала, развитие системы подготовки и переподготовки отраслевых кадров, увеличение объема научных исследований, увеличение количества создаваемых новых технологий и ускорение их внедрения, внедрение и развитие новых технологий проектирования и производства авиатехники, расширение применения композиционных материалов при производстве авиационной техники, создание опытных самолетов и двигателей, снижение трудоемкости серийно выпускаемой авиатехники.

Третье направление - поддержка продвижения российской авиатехники на рынки, в том числе развитие лизинга, распространение лизинга на поставки в рамках военно-технического сотрудничества, кредитование экспортных поставок и упрощение таможенного режима, организация политико-дипломатической поддержки, совершенствование нормативно-правовой базы с целью расширения участия в реализации перспективных авиационных проектов иностранных партнеров.

Ракетно-космическая промышленность России

Цель: Рост объема промышленной продукции ракетно-космической промышленности к 2015 году - в 1,8 раза по сравнению с 2007 годом и доли присутствия на мировом космическом рынке с 8 до 15 процентов.

Первое направление - создание космических комплексов и систем нового поколения с техническими характеристиками, обеспечивающими их высокую конкурентоспособность на мировом рынке.

Второе направление - завершение создания и развитие системы ГЛОНАСС.

Третье направление - развитие спутниковой группировки, в том числе создание группировки спутников связи, обеспечивающих рост использования всех видов связи. Создание группировки метеорологических и картографических спутников, способных передавать информацию в реальном масштабе времени.

Четвертое направление - расширение присутствия России на мировом космическом рынке.

Пятое направление - проведение организационных преобразований в ракетно-космической промышленности.

(До 2015 года будут образованы 3-4 крупные российские ракетно-космические корпорации, которые к 2020 году будут полностью обеспечивать выпуск ракетно-космической техники для решения экономических задач, задач обороноспособности и безопасности страны).

Шестое направление - модернизация наземной космической инфраструктуры и технологического уровня ракетно-космической промышленности

(Технологическое перевооружение ракетно-космической промышленности позволит повысить производительность труда в 2,5-3,5 раза).

Судостроительная промышленность России

Цели: Рост объема производства продукции судостроительной промышленности в 2015 году - в 2 раза, по сравнению с 2007 годом и в 2020 году - в 3,6 раза, рост производительности труда в 4-5 раз.

Место в ряду лидеров по производству гражданской судостроительной продукции. Второе место в сфере экспорта вооружения и военной техники (не менее 20 процентов мирового экспорта, увеличение экспортных поставок в 1,5-2 раза), объем экспортных поставок гражданской продукции увеличится более чем в 5 раз.

Приоритетные направления государственной политики:

Первое направление - создание конкурентоспособной специализированной морской техники.

Второе направление - проведение институциональных преобразований в отрасли, создание объединенной судостроительной корпорации, интегрированных структур по выпуску судового оборудования, развитие лизинга морской и речной техники.

Третье направление - развертывание программ содействия технологической модернизации и продвижению продукции на рынки.

Радиоэлектронная промышленность России

Цели: Рост объема продаж в 2015 году - в 5,2 раза по сравнению с 2008 годом. Достижение технологического уровня изделий микроэлектроники 0,13-0,09 мкм, в 2015 году - 0,045 мкм. в серийном производстве к 2011 году.

Приоритетные направления развития:.

Первое направление - создание современной научно-технической и производственно-технологической базы.

Второе направление - создание научно-технического задела по перспективным технологиям и конструкциям электронных компонентов, унифицированных узлов и блоков радиоэлектронной аппаратуры для обеспечения российской продукции и стратегически значимых систем.

Третье направление - обеспечение российских стратегических радиоэлектронных средств и систем российской электронной компонентной базой.

Атомный энергопромышленный комплекс Российской Федерации

Цели: достижение установленной мощности объектов атомной энергетики до 28-36 ГВт в 2012-2015 годах и до 50-53 ГВт - в 2020 году;

создание энергоблоков малой и средней мощности для расширения предложений действующих атомных электростанций;

экспорт оборудования и технологий в 2020 году на сумму не менее 8-14 млрд.долларов США в год (в ценах 2006 года).

Приоритетные направления:

Первое направление - рост установленной мощности и числа объектов атомной энергетики при обеспечении гарантированной безопасности, увеличение энергоснабжения атомными электростанциями потребителей к 2020 году до 20-22 процентов общего производства электроэнергии в Российской Федерации.

Второе направление - обеспечение интеграции российской атомной энергетики в мировую экономику в отношении топливного цикла и производства оборудования.

Третье направление - обеспечение мирового технологического лидерства российской атомной энергетики.

Четвертое направление - формирование организационных структур, обеспечивающих максимальную реализацию конкурентных преимуществ российской атомной энергетики и энергомашиностроительного комплекса на мировых рынках.

Информационно-коммуникационные технологии в России

Цели: сохранение темпов роста рынка информационно-коммуникационных технологий, превышающих среднегодовые показатели роста экономики в 2-3 раза;

превращение информационно-коммуникационных технологий в одну из ведущих отраслей экономики с долей в валовом внутреннем продукте более 10 процентов;

превышение объемов экспорта информационных технологий над объемом импорта этих технологий.

Приоритетные направления развития:

Первое направление - формирование современной информационной и телекоммуникационной инфраструктуры, обеспечение высокого уровня ее доступности, предоставление на ее основе качественных услуг.

Второе направление - повышение качества образования, медицинского обслуживания, социальной защиты населения, содействие развитию культуры и средств массовой информации на основе информационно-коммуникационных технологий.

Третье направление - обеспечение конкурентоспособности и технологического развития информационно-коммуникационных технологий.

Четвертое направление - повышение эффективности государственного управления и местного самоуправления, взаимодействия гражданского общества и бизнеса с органами государственной власти.

Пятое направление - противодействие использованию информационных и телекоммуникационных технологий в целях угрозы национальным интересам России, включая обеспечение безопасности функционирования информационно-телекоммуникационной инфраструктуры и информационных и телекоммуникационных систем.

Высокотехнологичные процессы как исследовательского, так и производственного характера отличаются высокими капитальными затратами на их техническое оснащение, высокой квалификацией персонала, оплатой его труда и стоимостью выпускаемой продукции. К числу последней относится изготовление активных микроэлектронных компонентов, преобразующих электрический ток или световые сигналы (диоды, транзисторы, интегральные схемы разной степени сложности, лазеры и т.д.). Эта продукция - сердцевина всей электронной промышленности, так как в ней создается «мозг» компьютерной техники - процессоры, блоки памяти, модемы (преобразователи сигналов) и т.д. Производство активных компонентов является своеобразным индикатором, характеризующим все технологическое, техническое, экономическое состояние электронной промышленности отдельных стран и мира в целом.

К числу высокотехнологичных процессов относятся и операции по сборке наиболее сложной электронной аппаратуры и оборудования: компьютеров четвертого и пятого поколений, уникальных военно-космических систем, многих видов научных, медицинских приборов. Высокотехнологичными в них являются не только сами процессы сборки, но особенно наладка такого оборудования и аппаратуры на самом предприятии, при которой применяется сложнейшая контрольная аппаратура. Это позволяет достигнуть не только проектных параметров систем, но и гарантирует их высокое качество и наежность в эксплуатации.

Еще один высокотехнологичный процесс - сервисное обеспечение некоторых видов проданной продукции. Установка сложнейшей электронной аппаратуры, обучение персонала работе на ней, консультации специалистов по ее эксплуатации, техническое обслуживание требует участия высококвалифицированных сотрудников, создавших эту аппаратуру. Сервисное обеспечение дает постоянные доходы, так как рассчитано по меньшей мере на срок морального износа аппаратуры.

Особым видом сервисного продукта стала разработка и продажа программного обеспечения для компьютеров. Программы строго избирательны: они создаются для решения конкретных задач в той или иной сфере хозяйства или науки. Другая группа электронных производств отличается высокими затратами труда на изготовление их продукции. Это главным образом технологические сборочные операции при изготовлении достаточно простых, так называемых пассивных, электронных компонентов (сопротивления, конденсаторы и т.д.)- Сюда же относится производство давно освоенных электромеханических и механических компонентов (реле, выключатели, разъемы, пульты управления, печатающие устройства и т.д.). В число этих трудоемких изделий входит большая группа бытовых товаров: электронные часы, игры, микрокалькуляторы, радиоприемники, плееры, телевизоры первых поколений и т.д. Они собираются десятками и даже сотнями миллионов экземпляров и идут на широкий потребительский рынок.

Развитие электронной промышленности, сдвиги в ее структурах отразились и на всей географии отрасли. В продукцию отрасли (преимущественно бытовую электронику и аппаратуру военного и промышленного назначения) производили главным образом ведущие промышленные государства (США, страны Западной и в меньшей степени Восточной Европы). Очень быстро рос ее выпуск в Японии. Внедрение сложной инновационной электронной техники, особенно компьютеров и микросхем, переориентировало страны с дорогой рабочей силой на производство дорогостоящей наукоемкой продукции. Это привело к снижению выпуска бытовой электронной аппаратуры.

В России сектор приборостроения имеет хорошие перспективы роста (рисунок 1) и может обеспечить рост всей отрасли в связи с широким применением навигационных приборов в промышленности и потребительском секторе.

Затраты на эксплуатацию GPS полностью покрываются налогами от продажи аппаратуры потребителей, а косвенный экономический эффект от развития отраслей, связанных с использованием GPS, позволяет говорить о том, что система полностью окупилась и приносит значительную прибыль. Важность и коммерческая состоятельность проекта подтверждается стремлением Евросоюза и Китая создавать собственные ГНСС. Европейская система GALILEO будет развернута в ближайшие годы, и международные аналитики прогнозируют бурное развитие этой системы, отдавая ей до 75% общемирового рынка услуг ГНСС в будущем. С появлением в небе GALILEO следует ожидать выпуска приемников GPS/GALILEO. Это подтверждается и совместным стремлением GPS и GALILEO спланировать развитие обеих систем с учетом возможности легкого построения двухсистемного приемника. Уже в августе 2006 года на рынке появился трехсистемный навигационный приемник GR-3 компании TOPCON.

Рисунок 1. Динамика роста российского рынка аппаратуры потребителей ГНСС по фактическим и прогнозным данным об объеме рынка, в %

Таким образом, для того чтобы отечественные предприятия приборостроения смогли занять свою нишу на рынке навигационных приборов, необходимо перенять успешный опыт, который был получен Правительствами США, стран Евросоюза и Китая по поддержке этого сектора приборостроения. Кроме того, необходимо продолжать оказывать поддержку предприятиям посредством формирования госзаказов на изготовление и поставку приборов для «защищенных» секторов (Минобороны, МВД, МЧС, Минтранс и т.д.). Принятие закона об оснащении отечественных автомобилей, судов и самолетов НАП ГНСС ГЛОНАСС обеспечит отечественным предприятиям большие заказы на поставку приемников и позволит снизить себестоимость их изготовления. Это повысит эффективность проектов по разработке и производству НАП, что повысит инвестиционную привлекательность этого сегмента приборостроения и отрасли в целом.


Заключение

Развитие высокотехнологичных отраслей, поставляющих на мировой рынок высокотехнологическую, очень дорогостоящую, транспортабельную продукцию, оказывает все большее влияние на размещение производительных сил, особенно промышленности. Увеличивается роль технополисов как крупнейших источников формирования ВНП отдельных стран, меняющих сложившуюся территориальную структуру индустрии. Технополисы стали наиболее динамичными полюсами роста экономики отдельных районов и даже целых стран.

Наиболее глубокие изменения в организации и размещении высокотехнологичных учреждений науки, в функционировании научной деятельности происходят на мезо- и особенно на микроуровне. Это отражает совершенно новые сложные интеграционные процессы как между структурами самой науки, так и между наукой и производством. В конечном итоге суть их - интеграция науки и потребителей готовой продукции. При этом в сильнейшей степени сокращается организационный, территориальный (временной по своему характеру) разрыв между научным открытием, возникновением новой идеи и их практической реализацией - чаще всего коммерческим применением. В большинстве случаев достижения превращаются в инновационный (новый) продукт, изделие, технологию. В ускорении инновационных процессов заинтересованы ученые, конструкторы, инженеры, организаторы производства, рыночные структуры.

Формирование территориальной структуры научных учреждений мира испытывало и продолжает ощущать влияние многих географических, демографических, социальных, экономических, культурных и других воздействий. Количество занятых в науке специалистов, научных учреждений, их структура, направления проводимых исследований сильно различаются по отдельным странам мира. Своеобразна география сложившихся научных центров в каждом государстве. В условиях быстроразвивающейся НТР возникли новые предпосылки для существенного изменения географии науки, глубокого преобразования отраслей, организационной и территориальной структуры ее центров в каждой стране.


Список использованной литературы

1. Алисов Н.В., Хорев Б.С. Экономическая и социальная география мира (общий обзор): Учебник. - М.: Гардарики, 2012. - 704 с

2. Гладкий Ю.Н. Экономическая география России. – М.: Проспект, 2010. 752 с.

3. Гребцова В.Е. Экономическая и социальная география России. – Ростов н/Д: Феникс, 2012.- 284 с.

4. Кистанов В.В. Региональная экономика. – М.: Финансы и статистика, 2013. – 577 с.

5. Морозова Т.Г. Экономическая география России. – М.: Юнити, 2010. – 577 с.

6. Родионова И.А., Бунакова Т.М. Учебно-справочноепособие. Экономическая география. 5-е издание. М., 2011.- 672 с.

7. Шульгин Г.К. Государственное регулирование как механизм привлечения инвестиций. // Интеграл. 2007. № 6 (38) С.28 – 29. (0,38 п.л.).

8. Шульгин Г.К. Совершенствование механизма устойчивого развития приборостроительной отрасли. / Научные труды Национального института бизнеса. Выпуск 1. – М.: изд-во НИБ, 2006. №1. С.332 – 343. (0,88 п.л.).

9. Шульгин Г.К. Конкурентоспособность национальной экономики и механизмы формирования и реализации инновационно-промышленной политики страны. / Вестник Национального института бизнеса. Выпуск 1. – М.: изд-во НИБ, 2007. С.410 – 422. (0,94 п.л.).

10. Шульгин Г.К. Обзор современного состояния экономики России и анализ результатов проведенных реформ. / Вестник Национального института бизнеса. Выпуск 5. – М.: изд-во НИБ, 2008. С.428 – 446. (1,25 п.л.).

11. Шульгин Г.К. Механизмы активизации инвестиционной деятельности в инновационном приборостроении. / Право и экономика: Сборник научных трудов. Выпуск 1. / Под ред. Н.Н. Косаренко. – М., 2008. С.98 – 106. (0,75 п.л.).

12. Шульгин Г.К. Теоретические подходы к сущности инновации. / Исследовательская культура: проблемы терминоведения. Материалы III конференции молодых ученых Северо-Запада Российской Федерации. / Под общ. ред. И.И. Лютовой, Т.В. Лодкиной – Вологда: ВИБ, 2008. С. 84 – 100. (0,94 п.л.).

13. Шульгин Г.К. Российская экономика на современном этапе развития и результаты экономических реформ 90-х годов ХХ века. / Вестник Национального института бизнеса. Выпуск 6. – М.: изд-во НИБ, 2008.
С. 356 – 370. (1,06 п.л.).

14. Шульгин Г.К. Использование зарубежного опыта в регулировании инновационной деятельности в приборостроительной отрасли. / Материалы международной научно-практической конференции «Экономико-правовые проблемы общества в условиях общемировой глобализации» СФ ННОУ ВПО «МИПП». – Ставрополь, 2008. С. 254 – 265. (0,63 п.л.).

15. Шульгин Г.К. Совершенствование методов регулирования инновационной деятельности в приборостроительной отрасли. / Право и экономика: сб. науч. трудов. – Вып. 3 / под ред. Н.Н. Косаренко. – М., 2008. С. 104 – 113. (0,88 п.л.).


Приложение

Таблица 2. Компании с самыми высокими затратами на НИОКР в 2012 г.

Название компании Регион Затраты на НИОКР, млн. долл. США Доля затрат на НИОКР в объеме продаж
Toyota Motor Japan 3,90%
Samsung Electronics Rest of World 6,90%
Hyundai Motor Rest of World 2,40%
Caterpillar North America 3,00%
Volvo Group Europe 3,10%
Exxon Mobil North America 0,20%
Boston Scientific North America 10,80%
Symantec North America 16,00%
Konica Minolta Japan 6,30%
Sumitomo Electronics Industries Japan 3,20%
Yahoo Inc. North America 10,40%
Apple Computer North America 3,80%
Google North America 7,90%
Dell North America 0,80%
Komatsu Japan 3,00%
Taiwan Semiconductor Manufacturing Rest of World 5,30%
Forest Laboratories North America 14,10%
Petrobras Rest of World 0,70%
St. Jude Medical North America 12,70%
Teva Pharmaceutical Industries Rest of World 7,00%
eBay North America 7,20%

Развитие высокотехнологичных отраслей промышленности в КНР и стратегия создания «национальных чемпионов»

Обзор ситуации с инновациями и развитием высокотехнологичных отраслей промышленности в КНР

35 лет спустя после начала проведения «политики реформ и открытости» Китай являет собой страну, всё ещё демонстрирующую солидные показатели экономического роста. Уже давно раздающиеся прогнозы о неизбежном замедлении экономического развития Китая начали сбываться, однако ведущий китайский экономист со степенью доктора по экономике Гарвардского университета Дэвид Даокуй Ли утверждает, что «есть ещё порох в пороховницах» и что Китай лишь в середине процесса своего «мирного возвышения» Станет ли XXI век веком Китая?... С. 47.. Тем не менее, вполне очевидно, что Китай уже исчерпал многие из ресурсов своего феноменального экономического роста в конце 20 - начале 21 века. К тому же, «мирное возвышение» Китая вызывает растущую озабоченность не только у стран-лидеров (США, Япония и др.) и не столько в связи с вопросами чисто экономического характера. Поэтому Китаю предстоит столкнуться со всё более ужесточающейся конкуренцией как на мировом рынке, так и во внешней политике, включая вопросы безопасности. В этой связи особую значимость приобретает тот факт, что лидерство указанных стран основывается во многом на их технологическом и научно-техническом новаторстве, а раз так, то на первый план для Китая выходит перспектива конкуренции с США, Японией и другими ведущими экономиками мира в области инноваций.

До относительно недавнего времени ситуация с инновациями в китайской экономике обстояла не лучшим образом. Как справедливо отмечает в своей книге ведущий отечественный китаист Яков Михайлович Бергер, «та модель, на которую опирался и до сего времени в основном опирается экономический рост в Китае, не является инновационной. Главными двигателями роста в ней являлись инвестиции и экспорт, а инновации, в первую очередь, собственные, отечественные, долгое время играли подсобную, несистемную роль» Бергер Я.М. Указ соч. С. 219.. Если говорить о собственно китайских инновациях, то часто можно встретить мнение, особенно популярное у западных экспертов по Китаю, о том, что сама китайская конфуцианская культура не инновационна по своей сути: слишком большое внимание уделяется в процессе обучения механическому заучиванию, слишком сильный акцент делается на следовании канонам и копировании образцов, признаваемых эталонными. Даже знаменитые китайские изобретения, вроде бумаги, пороха или компаса, как считается, возникли больше по воле случае, а не в процессе целенаправленной инновационной деятельности, как это имело место быть в случае паровой машины Уатта или радио Маркони-Попова. В этой связи весьма примечательна позиция таких современных китайских экономистов, как профессор Линь Ифу, откровенно сомневающихся в пользе развития чисто китайских инноваций для экономики страны: «установка на собственные инновации не только чрезвычайно затратна, но и сопряжена с большим риском. В лучшем случае пять пионерских проектов из ста увенчаются успехом и обеспечат патент. Но и из этих пяти далеко не все принесут коммерческую выгоду» Бергер Я.М. Цит. соч. С. 223..

Тем не менее, руководство КНР недвусмысленно выбирает инновационный путь развития народного хозяйства страны, ещё на XVII съезде КПК провозгласив необходимость создания национальной инновационной системы для построения высокоэффективной экономики. Определённые успехи на этом пути были сделаны, начиная с 90-х годов прошлого века. Так, к 1998-му году Китай, по оценкам Организации ООН по промышленному развитию (ЮНИДО), поднялся на 11-е место в мировом рейтинге по экспорту высокотехнологичной продукции, не входя в середине восьмидесятых даже в первые 25 стран мира по этому показателю. За тот же период по индексу конкурентоспособности промышленности (CIP) Китай поднялся с 61-го на 37-е место. И если «вплоть до 2003 года Китай ввозил больше высокотехнологичных товаров, чем вывозил, что способствовало образованию значительного отрицательного сальдо по этой группе товаров», то «уже начиная с 2004 года экспорт превысил импорт, и высокотехнологичные товары стали важной статьёй внешней торговли, способствуя росту положительного баланса» Бергер Я.М. Цит. соч. С. 220..

Но экспорт высокотехнологичных товаров ещё не есть признак инновационной экономики: Я.М. Бергер отмечает в своей книге, что китайский сектор высокотехнологичного производства в очень значительной степени зависит от ввозных технологий и импортного оборудования, а доля собственных китайских научно-исследовательских и конструкторских разработок (НИОКР) сравнительно мала при развитой системе отраслевых и академических научно-исследовательских институтов, сформировавшейся ещё во времена следования Китая в фарватере инновационного пути СССР. Так, если США и Япония, как две ведущие державы в области высоких технологий, зависят от импортных «ноу-хау» на 10%, то аналогичная зависимость КНР уже превышает 50%. «Китай импортирует более 70% оборудования для производства автомобилей, прецизионных станков с цифровым управлением, текстиля, 90% - для производства интегральных схем, более 95% для сложного медицинского оборудования, 100% оборудования для производства оптического волокна, телевизоров, мобильных телефонов. Будучи вторым в мире производителем продуктов информационной электроники, Китай почти полностью полагается в этой отрасли на импорт ключевых технологий» Бергер Я.М. Цит. соч. С. 222.. Автор учебника по экономике Китая из Массачусетского технологического университета - Барри Нотон справедливо отмечает, что такая картина характерна для всех развивающихся стран на раннем этапе перехода к созданию инновационной экономики Naughton. P. 351-353.. Как видно, например, из воспоминаний одного из основателей японской корпорации Sony - Акио Мориты Акио Морита. Сделано в Японии. - М.: «Альпина Паблишер», 2007., даже нынешние японские супергиганты в сфере инноваций вынуждены были использовать на этапе своего становления импортные технологии (тогда - в первую очередь американские и немецкие). Но у Мориты же приведён пример обратного явления - смелой инновационной деятельности на свой страх и риск: в попытках создать собственную технологию изготовления магнитной ленты для первых магнитофонов инженеры тогда ещё маленькой фирмы, которая затем выросла в современную Sony, вместе с её основателями вручную склеивали материал и наносили на него магнитный слой, что в дальнейшем позволило компании Sony зарегистрировать соответствующий патент, приобретя не только источник получения прибыли, но и репутацию фирмы-новатора. Возникающее здесь противоречие с приведённым выше высказыванием китайского экономиста Линя Ифу крайне наглядно демонстрирует принципиальное различие между японским и китайским путями построения современной высокотехнологичной экономики: если в заимствовании и использовании чужих технологий они преуспели примерно в одинаковой степени, то чисто инновационная деятельность с опорой на собственные разработки и даже доработка заимствованных технологий всё ещё является «ахиллесовой пятой» подавляющего большинства китайских компаний - даже самых успешных. О некоторых из них речь и пойдёт в следующем параграфе.

солнечный фотоэлектрический китайский сбыт

Новейшими отраслями промышленности являются отрасли высоких технологий. От остальных они отличаются большой наукоемкостью, то есть высочайшим уровнем затрат на конструкторские, опытные, исследовательские и научные работы.

К таким отраслям относят: создание электротехнической аппаратуры, микроэлектроника, изготовление высокоточных радиоэлектронных инструментов, производство вычислительной техники, информатика, авиационная и ракетостроительная отрасли, роботостроение, микробиологическая, космическая и атомная промышленность и иные.

Новейшие промышленные отрасли относят к высокотехнологичным в зависимости от того, на сколько глубокое участие принимает в технологическом процессе человек. Чем меньше участие последнего, тем выше считается технология.

Новейшие высокотехнологичные отрасли

Среди новейших высокотехнологичных отраслей выделяются:

  • Социальные технологии. Данная отрасль представляет собой сумму определенных приемов и воздействий, которые применяются с целью достижения поставленных задач путем социального развития. Она также призвана решать различные социальные проблемы, изменять сознание человека и влиять на него. Примерами таких целей, например, в бизнесе могут служить -задачи, для решения которых используются такие технологии, как брейн-сторминг, рефлексивная игротехника, деловые игры. В политике такой целью может быть идеологическое воздействие и влияние на общественное мнение. В масштабах государства эти технологии используются для создания планов развития страны.
  • Электронная промышленность и физические исследования. Важнейшие разработки этих отраслей касаются изучения электронов и электромагнитных полей, микромиров, путей создания способов хранения данных посредством электромагнитной энергии и другое.
  • Микроэлектроника и создание искусственного интеллекта (в виде компьютерных программ и интеллектуальных машин).
  • Беспроводные технологии, телематика и телекоммуникации. Эта отрасль изучает и создает пути передачи информации путем лазерных, оптических или иных излучений.
  • Робототехника – важнейшая отрасль по разработкам в сфере интенсификации производства.
  • – сфера фундаментальных и прикладных наук, работающих с практическими и теоретическими методами синтеза и анализа способов производства и использования продуктов с заранее заданной атомной структурой.
  • Альтернативная энергетика и энергосбережение – перспективные направления, изучающие получение, передачу и использование энергии. Пока мало распространены, но интересны ожидаемой выгодой в будущем. К этому виду относятся атомная, водородная, солнечная энергетика, переработка отходов и очистка воды и воздуха.
  • Системы безопасности ­– сфера изучения биометрии и электронных анализаторов.
  • Навигационные технологии – создание систем слежения и передачи данных.
  • Оборонные и технологии с двойным назначением. К этому виду относятся технологии, одновременно используемые для изготовления вооружений и для предприятий гражданских отраслей. Эта группа включает в себя ракетное строение, производство аппаратов для космоса и авиастроение.
  • Биотехнологические дисциплины, микробиология. Изучают возможность использования методов генной инженерии.
  • Ноотропные исследования. Проведение разработок в сфере нейрометаболических стимуляторов, которые изменяют функции высших отделов мозга: стимулирование умственной деятельности, улучшение памяти, увеличение способности к обучению, устойчивость к большим нагрузкам и гипоксии.
  • Биоиндустрия и фармацевтика. Это сфера производства и изучения новейших ферментов, антибиотиков, методов селекции с помощью генов.