Оценка и прогнозирование объема продаж. Прогнозирование объемов продаж на примере компании ООО «Benetton». Виды квот и их распределение

Заключительным этапом разработки плана маркетинга является определение объёма продаж. Планированию объёма продаж, как правило, предшествует прогноз сбыта. Прогноз сбыта продукции включает определение основных объемных показателей деятельности предприятия и осуществляется на основе прогноза спроса, определенного для масштабов предприятия. Прогноз сбыта – это тот центр, вокруг которого концентрируется все планирование бизнеса. Прогноз сбыта разрабатывается для любого периода упреждения. Долгосрочный прогноз сбыта позволяет заложить фундамент для производства новых видов продукции и технологических процессов. Среднесрочный – это обычно проекция существующих тенденций в будущее с учётом возможного воздействия предполагаемых изменений в численности покупателей, конъюнктуры рынка и изменений других факторов.

Краткосрочный прогноз сбыта может быть сроком до одного года, используется в качестве основы для планирования маркетинга, обоснования планов сбыта.

Прогноз сбыта содержит разные измерители, но среди них обязательно должны быть количество единиц продукции и цена. При разработке прогноза сбыта пользуются той же информацией, что и при прогнозе . Это сведения о конъюнктуре рынка, состоянии экономики в целом, перспективы товарного предложения, условиях деятельности предприятия и т.д.

Прогноз сбыта и план сбыта строятся примерно по одной схеме, но план сбыта должен быть более детализированным, конкретным и увязан с финансово-организационными аспектами осуществления. Некоторые предприятия предпочитают не составлять план сбыта, ограничиваясь разработкой его прогноза и составлением политики сбыта.

Сегодня прогнозирование объёма продаж осуществляется двумя методами:

Метод экспертных оценок

В основе этого метода лежит изучение мнений специалистов предприятий-изготовителей, потребителей продукции о возможных объемах продукции предприятия в планируемом периоде. На их основе экспертным путем определяются три вида прогноза объема продаж: оптимистический, пессимистический и вероятностный. Ожидаемый объем продаж (ОП) в плановом периоде может быть определен по формуле:

ОП = (О + 4В+ П)/6
где О, В, П – объемы продаж – соответственно оптимистический, вероятностный, пессимистический.

Так как любой прогноз носит вероятностный характер, то рассчитывается доверительный интервал возможного объема продаж:

Д = ОП± 2(О-П)/6
где О-П/6 – стандартное отклонение оценок продаж.

При расчете объема продаж методом экспертных оценок большое значение имеет квалификация экспертов. Знание особенностей продукции, рынка, конкурентов, тенденции их развития способствуют повышению достоверности получения данных.

Экономико-статистические методы

Экономико-статистические методы включают широкий спектр различных методов. Не все они получили широкое распространение в практике . Наиболее популярными являются:

  • Метод экстраполяции – определяет объем продаж как функцию времени (или иного фактора). Как обычно в таких случаях необходим учет динамического (временного) ряда показателя
  • Метод скользящей средней величины продаж. Планируемый объем продаж определяется делением фактического объема продаж на продолжительность анализируемого периода. Скользящая средняя величина пересчитывается по мере получения новых значений;
  • Метод доли рынка предприятия – в основе данные о среднегодовых темпах роста емкости целевого рынка в прошедшем периоде и планируемой доли предприятия в общем объеме продаж

ОП = Ер× Иср Д/100
где Ер – емкость целевого рынка в отчетном году, ед.
Иср – среднегодовой индекс роста емкости целевого рынка
Д – планируемая доля предприятия на целевом рынке в прогнозируемый период, %.

Планирование сбыта может происходить на основе показателей прибыли и рентабельности, необходимых фирме. Такой расчёт использует понятие «точка безубыточности» , которая характеризует пограничный, т.е. нулевой по прибыльности объём работы.

ОП = ПОИ/ 1-ПИ´ (руб.)
где ПОИ – постоянные издержки
ПИ´ – уровень переменных издержек в единице товара.

Знание пограничного объема, за которым для фирмы наступает сфера прибыльности, позволяет ей произвести выбор конкретной величины сбыта.

Использование точки безубыточности может способствовать обоснованию конкретного объёма продаж с учетом исходных данных по прибыли и рентабельности, а также складывающихся издержек, позволяет обосновать тот объем, который обеспечит получение предусматривающихся конечных результатов деятельности.

Метод прямого счёта

Метод прямого счёта – планирование осуществляется на основе рациональных норм расхода, потребления.

Эффективность применения того или иного метода прогноза продаж зависит от конкретных условий и специфики хозяйственной деятельности предприятия.

Работа по планированию объема продаж заканчивается формированием портфеля заказов. Портфель заказов состоит из трёх разделов:

  • текущих заказов, обеспечивающих ритмичную работу предприятия
  • среднесрочных
  • перспективных заказов

На все заказы, в первую очередь, текущие, должны быть заключены договора.

Краеугольный камень в управлении запасами и огромная головная боль управляющего. Как это делать на практике ?

Целью данных записок не является изложение теории прогнозирования - книжек существует множество. Целью является сжато и по возможности без глубокой и строгой математики дать обзор различных методов и практик применения именно в области управления запасами. Я старался не "залезать в дебри", рассматривать лишь наиболее часто встречающиеся ситуации. Заметки написаны практиком и для практиков, поэтому не стоит искать здесь каких-то изощренных методик, описаны только самые общие. Так сказать, mainstream в чистом виде.

Впрочем, как и везде на этом сайте всячески приветствуется участие - добавляйте, исправляйте, критикуйте...

Прогнозирование. Постановка задачи

Любой прогноз всегда ошибочен. Весь вопрос в том, насколько он ошибочен.

Итак, у нас в распоряжении есть данные о продажах. Пусть это выглядит так:

На языке математики это называется временным рядом:

Временной ряд обладает двумя критическими свойствами

    значения обязательно упорядочены. Переставьте два любых значения местами, и получите другой ряд

    подразумевается, что значения в ряду — это результат измерения через одинаковые фиксированные промежутки времени; прогнозирование поведения ряда означает получение «продолжения» ряда через те же самые промежутки на заданный горизонт прогнозирования

Отсюда следует требование к точности исходных данных — если мы хотим получить понедельный прогноз, исходная точность должна быть не хуже, чем понедельные отгрузки.

Отсюда также следует, что если мы «достаем» из учетной системы данные о продажах помесячно, их нельзя использовать впрямую, поскольку количество времени, в течение которого производились отгрузки, в каждом месяце разное и это вносит дополнительную ошибку, поскольку объем продаж приблизительно пропорционален этому времени.

Впрочем, это не является такой уж сложной проблемой — давайте просто приведем эти данные к среднедневным.

Для того, чтобы сделать какие-то предположения относительно дальнейшего хода процесса, мы должны, как уже говорилось, уменьшить степень нашего незнания. Мы предполагаем, что наш процесс имеет какие-то внутренние закономерности течения, совершенно объективные в текущем окружении. В общих чертах это можно представить как

Y(t) — значение нашего ряда (например, объем продаж) в момент времени t

f(t) — некая функция, описывающая внутреннюю логику процесса. Ее в дальнейшем будем называть прогнозной моделью

e(t) — шум, ошибка, связанная со случайностью процесса. Или, что то же самое, связанная с нашим незнанием, неумением учесть другие факторы в модели f(t) .

Теперь наша задача состоит в том, чтобы отыскать такую модель, чтобы величина ошибки была заметно меньше наблюдаемой величины. Если мы отыщем такую модель, мы можем считать, что процесс в будущем пойдет примерно в соответствии с этой моделью. Более того, чем точнее модель будет описывать процесс в прошлом, тем больше у нас уверенности, что она сработает и в будущем.

Поэтому процесс как правило бывает итеративным. Исходя из простого взгляда на график прогнозист выбирает простую модель и подбирает ее параметры таким образом, чтобы величина


была в каком-то смысле минимально возможной. Эту величину как правило называют «остатками» (residuals), поскольку это то, что осталось после вычитания модели из фактических данных, то, что не удалось описать моделью. Для оценки того, насколько хорошо модель описывает процесс, необходимо посчитать некую интегральную характеристику величины ошибки. Наиболее часто для вычисления этой интегральной величины ошибки используют среднее абсолютное или среднеквадратическое величины остатков по всем t. Если величина ошибки достаточно велика, пытаются «улучшить» модель, т.е. выбрать более сложный вид модели, учесть большее количество факторов. Нам, как практикам, следует в этом процессе строго соблюдать как минимум два правила:


Наивные методы прогнозирования

Наивные методы

Простое среднее

В простом случае, когда измеренные значения колеблются вокруг некоторого уровня, очевидным является оценка среднего значения и предположение о том, что и впредь реальные продажи будут колебаться вокруг этого значения.

Скользящее среднее

В реальности же как правило картинка хоть немного, да «плывет». Компания растет, оборот увеличивается. Одной из модификаций модели среднего, учитывающей это явление, является отбрасывание наиболее старых данных и использование для вычисления среднего лишь нескольких k последних точек. Метод получил название «скользящего среднего».


Взвешенное скользящее среднее

Следующим шагом в модификации модели является предположение о том, что более поздние значения ряда более адекватно отражают ситуацию. Тогда каждому значению присваивается вес, тем больший, чем более свежее значение добавляется.

Для удобства можно сразу выбрать коэффициенты таким образом, чтобы сумма их составляла единицу, тогда не придется делить. Будем говорить, что такие коэффициенты отнормированы на единицу.


Результаты прогнозирования на 5 периодов вперед по этим трем алгоритмам приведены в таблице

Простое экспоненциальное сглаживание

В англоязычной литературе часто встречается аббревиатура SES — Simple Exponential Smoothing

Одной из разновидностей метода усреднения является метод экспоненциального сглаживания . Отличается он тем, что ряд коэффициентов здесь выбирается совершенно определенным образом — их величина падает по экспоненциальному закону. Остановимся здесь немного подробнее, поскольку метод получил повсеместное распространение благодаря простоте и легкости вычислений.

Пусть мы делаем прогноз на момент времени t+1 (на следующий период). Обозначим его как

Здесь мы берем в качестве основы прогноза прогноз последнего периода, и добавляем поправку, связанную с ошибкой этого прогноза. Вес этой поправки будет определять, насколько «резко» наша модель будет реагировать на изменения. Очевидно, что

Считается, что для медленно меняющегося ряда лучше брать значение 0.1, а для быстро меняющегося — подбирать в районе 0.3-0.5.

Если переписать эту формулу в другом виде, получается

Мы получили так называемое рекуррентное соотношение — когда последующий член выражается через предыдущий. Теперь мы прогноз прошлого периода выражаем тем же способом через позапрошлое значение ряда и так далее. В итоге удается получить формулу прогноза

В качестве иллюстрации продемонстрируем сглаживание при разных значениях постоянной сглаживания

Очевидно, что если оборот более-менее монотонно растет, при таком подходе мы будем систематически получать заниженные цифры прогнозов. И наоборот.

Ну и в заключение методика сглаживания с помощью электронных таблиц. Для первого значения прогноза мы возьмем фактическое, а далее по формуле рекурсии:

Составляющие прогнозной модели

Очевидно, что если оборот более-менее монотонно растет, при таком «усредняющем» подходе мы будем систематически получать заниженные цифры прогнозов. И наоборот.

Чтобы более адекватно промоделировать тенденцию, в модель вводится понятие «тренда», т.е. некоторой гладкой кривой, которая более-менее адекватно отражает «систематическое» поведение ряда.

Тренд

На рис. показан тот же ряд в предположении приблизительно линейного роста


Такой тренд называется линейным — по виду кривой. Это наиболее часто применяемый вид, реже встречаются полиномиальные, экспоненциальные, логарифмические тренды. Выбрав вид кривой, конкретные параметры обычно подбирают методом наименьших квадратов.

Строго говоря, эта компонента временного ряда называется тренд-циклической , то есть включает в себя колебания с относительно длинным периодом, для наших задач — порядка десятка лет. Эта циклическая составляющая характерна для мировой экономики или интенсивности солнечной активности. Поскольку мы тут решаем не такие глобальные проблемы, горизонты у нас поменьше, то и циклическую компоненту мы оставим за скобками и далее везде будем говорить о тренде.

Сезонность

Однако на практике нам оказывается недостаточно моделировать поведение таким образом, что мы подразумеваем монотонный характер ряда. Дело в том, что рассмотрение конкретных данных о продажах сплошь и рядом приводит нас к выводу о наличии еще одной закономерности — периодическом повторении поведения, некотором шаблоне. К примеру, рассматривая продажи мороженого, очевидно, что зимой они как правило ниже среднего. Такое поведение совершенно понятно с точки зрения здравого смысла, поэтому возникает вопрос, нельзя ли использовать эту информацию для уменьшения нашего незнания, для уменьшения неопределенности?

Так возникает в прогнозировании понятие «сезонности » - любое повторяющееся через строго определенные промежутки времени изменение величины. Например, всплеск продаж елочных игрушек в последние 2 недели года можно рассматривать как сезонность. Как правило, подъем продаж супермаркета в пятницу и субботу в сравнении с остальными днями можно рассматривать как сезонность с недельной периодичностью. Хоть и называется эта составляющая модели «сезонность», необязательно она связана именно с сезоном в бытовом понимании (весна, лето). Любая периодичность может называться сезонностью. С точки зрения ряда сезонность характеризуется прежде всего периодом или лагом сезонности — числом, через которое происходит повторение. Например, если у нас ряд месячных продаж, мы можем предполагать, что период составляет 12.

Различают модели с аддитивной и мультипликативной сезонностью . В первом случае сезонная поправка добавляется к исходной модели (в феврале продаем на 350 ед. меньше, чем в среднем)

во втором — происходит умножение на коэффициент сезонности (в феврале продаем на 15% меньше, чем в среднем)

Заметим, что, как уже говорилось в начале, само наличие сезонности должно быть объяснимо с точки зрения здравого смысла. Сезонность является следствием и проявлением свойства продукта (особенностей его потребления в данной точке земного шара). Если мы сможем аккуратно идентифицировать и измерить это свойство этого конкретного продукта, мы сможем быть уверены, что такие колебания продолжатся и в будущем. При этом один и тот же продукт вполне может иметь разные характеристики (профили ) сезонности в зависимости от места, где он потребляется. Если же мы не можем объяснить такое поведение с точки зрения здравого смысла, у нас нет оснований для предположительного повторения такого шаблона в будущем. В этом случае мы должны искать другие факторы, внешние по отношению к продукту и рассматривать их наличие в будущем.

Важно то, что при выборе тренда мы должны выбирать простую аналитическую функцию (то есть такую, которую можно выразить простой формулой), тогда как сезонность как правило выражается табличной функцией. Самый распространенный случай — годовая сезонность с 12 периодами по числу месяцев — это таблица из 11 мультипликативных коэффициентов, представляющих поправку относительно одного опорного месяца. Или 12 коэффициентов относительно среднемесячного значения, только очень важно, что при этом независимыми остаются те же 11, поскольку 12й однозначно определяется из требования

Ситуация, когда в модели присутствует M статистически независимых (!) параметров , в прогнозировании называется моделью с M степенями свободы . Так что если вам встретится специальный софт, в котором как правило необходимо в качестве входных параметров задать число степеней свободы, это отсюда. Например, модель с линейным трендом и периодом 12 месяцев, будет иметь 13 степеней свободы — 11 от сезонности и 2 от тренда.

Как жить с этими составляющими ряда, рассмотрим в следующих частях.

Классическая сезонная декомпозиция

Декомпозиция ряда продаж.

Итак, мы весьма часто можем наблюдать поведение ряда продаж, в котором присутствуют компоненты тренда и сезонности . Мы имеем намерение улучшить качество прогноза, учитывая это знание. Но для того, чтобы использовать эту информацию, нам необходимы количественные характеристики. Тогда мы из фактических данных сможем исключить тренд и сезонность и тем самым значительно уменьшить величину шума, а значит и неопределенность будущего.

Процедура выделения неслучайных компонент модели из фактических данных называется декомпозицией .

Первое, чем мы займемся на наших данных — сезонная декомпозиция , т.е. определение числовых значений сезонных коэффициентов. Для определенности возьмем наиболее распространенный случай: данные о продажах сгруппированы помесячно (поскольку требуется прогноз с точностью до месяца), предполагается линейный тренд и мультипликативная сезонность с лагом 12.

Сглаживание ряда

Сглаживанием называется процесс, при котором исходный ряд заменяется другим, более плавным, но основанным на исходном. Целью такого процесса является оценка общих тенденций, тренда в широком смысле. Методов (как и целей) сглаживания существует много, наиболее распространенные

    укрупнение временных интервалов . Очевидно, что ряд продаж, агрегированный помесячно, ведет себя более гладко, чем ряд, основанный на дневных продажах

    скользящее среднее . Мы уже рассматривали этот метод, когда говорили о наивных методах прогнозирования

    аналитическое выравнивание . В этом случае исходный ряд заменяется некоторой гладкой аналитической функцией. Вид и параметры подбираются экспертно по минимуму ошибок. Опять же, мы это уже обсуждали, когда говорили о трендах

Дальше мы будем использовать сглаживание методом скользящего среднего. Идея состоит в том, что набор из нескольких точек мы заменяем одной по принципу «центра масс» - значение равно среднему этих точек, а расположен центр масс, как нетрудно догадаться, в центре отрезка, образованного крайними точками. Так мы устанавливаем некий «средний» уровень для этих точек.

В качестве иллюстрации наш исходный ряд, сглаженный по 5 и 12 точкам:

Как нетрудно догадаться, если происходит усреднение по четному числу точек, центр масс падает в промежуток между точками:

К чему это я все веду?

Для того, чтобы провести сезонную декомпозицию , классический подход предлагает сначала провести сглаживание ряда с окном, в точности совпадающим с лагом сезонности. В нашем случае лаг = 12, так что если мы сгладим по 12 точкам, по всей видимости, возмущения, связанные с сезонностью, нивелируются и мы получим общий средний уровень. Вот тогда уже мы начнем сравнивать фактические продажи с сглаженными значениями — для аддитивной модели будем вычитать из факта сглаженный ряд, а для мультипликативной — делить. В результате получим набор коэффициентов, для каждого месяца по нескольку штук (в зависимости от длины ряда). Если сглаживание прошло успешно, эти коэффициенты будут иметь не слишком большой разброс, так что усреднение для каждого месяца будет не столь уж дурацкой затеей.

Два момента, которые важно отметить.

  • Усреднение коэффициентов можно делать как вычислением стандартного среднего, так и медианы. Последний вариант очень рекомендуется многими авторами, поскольку медиана не так сильно реагирует на случайные выбросы. Но мы в нашей учебной задаче будем использовать простое среднее.
  • У нас будет лаг сезонности 12, четный. Поэтому нам придется сделать еще одно сглаживание — заменить две соседние точки сглаженного в первый раз ряда на среднее, тогда мы попадем на конкретный месяц

На картинке результат повторного сглаживания:

Теперь делим факт на гладкий ряд:



К сожалению, у меня были данные лишь за 36 месяцев, а при сглаживании по 12 точкам один год, соответственно, теряется. Поэтому на данном этапе я получил коэффициенты сезонности лишь по 2 на каждый месяц. Но делать нечего, это лучше, чем ничего. Будем усреднять эти пары коэффициентов:

Теперь вспоминаем, что сумма мультипликативных коэффициентов сезонности должна быть =12, поскольку смысл коэффициента — отношение продаж месяца к среднемесячному. Именно это делает последняя колонка:

Вот теперь мы выполнили классическую сезонную декомпозицию , то есть получили значения 12-ти мультипликативных коэффициентов. Теперь пришла пора заняться нашим линейным трендом. Для оценки тренда мы устраним из фактических продаж сезонные колебания, разделив факт на полученное для данного месяца значение.

Теперь построим на графике данные с устраненной сезонностью, проведем линейный тренд и составим для интереса прогноз на 12 периодов вперед как произведение значения тренда в точке на соответствующий коэффициент сезонности


Как видно из картинки, очищенные от сезонности данные не очень хорошо укладываются в линейную зависимость — слишком большие отклонения. Возможно, если почисить исходные данные от выбросов, все станет намного лучше.

Для более точного определения сезонности при помощи классической декомпозиции весьма желательно иметь не менее 4-5 полных циклов данных, так как один цикл не участвует в вычислении коэффициентов.

Что делать, если по техническим причинам таких данных нет? Нужно найти метод, который не будет отбрасывать никакую информацию, будет использовать всю имеющуюся для оценки сезонности и тренда. Попробуем такой метод рассмотреть в следующей части

Экспоненциальное сглаживание с учетом тренда и сезонности. Метод Холта-Винтерса

Возвращаясь к экспоненциальному сглаживанию...

В одной из предыдущих частей мы уже рассматривали простое экспоненциальное сглаживание . Напомним в двух словах основную идею. Мы предполагали, что прогноз для точки t определяется некоторым средним уровнем предыдущих значений. Причем способ, которым вычисляется прогнозное значение, определяется рекуррентным соотношением

В таком виде метод дает удобоваримые результаты, если ряд продаж достаточно стационарен — нет выраженного тренда или сезонных колебаний . Но на практике такой случай — счастье. Поэтому мы рассмотрим модификацию данного метода, позволяющую работать с трендовыми и сезонными моделями.

Метод получил название Холта-Винтерса по именам разработчиков: Холт предложил метод учета тренда , Винтерс добавил сезонность .

Для того, чтобы не только разобраться с арифметикой, но и «почувствовать», как это работает, давайте немного повернем нашу голову и подумаем, что меняется, если мы вводим тренд. Если для простого экспоненциального сглаживания оценка прогноза на p-й период делалась как

где Lt — усредненный по известному правилу «общий уровень», то при наличии тренда появляется поправка


,

то есть к общему уровню добавляется оценка тренда. Причем как общий уровень, так и тренд мы будем усреднять независимо по методу экспоненциального сглаживания. Что понимается под усреднением тренда? Мы предполагаем, что в нашем процессе присутствует локальный тренд, определяющий систематическое приращение на одном шаге — между точками t и t-1, например. И если для линейной регрессии линия тренда проводится по всей совокупности точек, мы считаем, что более поздние точки должны вносить больший вклад, поскольку рыночное окружение постоянно меняется и более свежие данные более ценны для прогноза. В итоге Холт предложил использовать уже два рекуррентных соотношения — одно сглаживает общий уровень ряда , другое сглаживает трендовую составляющую .

Методика сглаживания такова, что вначале выбираются начальные значения уровня и тренда, а затем делается проход по всему ряду, на каждом шаге вычисляя новые значения по формулам. Из общих соображений понятно, что начальные значения должны как-то определяться исходя из значений ряда в самом начале, однако четких критериев тут нет, присутствует элемент волюнтаризма. Наиболее часто используются два подхода в выборе «точек отсчета»:

    Начальный уровень равен первому значению ряда, начальный тренд равен нулю.

    Берем первые несколько точек (штук 5), проводим линию регрессии (ax+b). Начальный уровень задаем как b, начальный тренд как a.

По большому счету этот вопрос не является принципиальным. Как мы помним, вклад ранних точек мизерный, поскольку коэффициенты очень быстро (по экспоненте) убывают, так что при достаточной длине ряда исходных данных мы скорее всего получим практически идентичные прогнозы. Разница, однако, может проявиться при оценке ошибки модели.


На этом рисунке показаны результаты сглаживания при двух выборах начальных значений. Здесь хорошо видно, что большая ошибка второго варианта связана с тем, что начальное значение тренда (взятое по 5 точкам) получилось явно завышенным, поскольку мы не учитывали рост, связанный с сезонностью.

Поэтому (вслед за господином Винтерсом) усложним модель и будем делать прогноз с учетом сезонности :


В данном случае мы, как и раньше, предполагаем мультипликативную сезонность. Тогда наша система уравнений сглаживания получает еще одну составляющую:




где s — лаг сезонности.

И вновь заметим, что выбор начальных значений, как и величин постоянных сглаживания — вопрос воли и мнения эксперта.

Для действительно важных прогнозов, однако, можно предложить составить матрицу всех комбинаций постоянных и перебором выбрать такие, которые дают меньшую ошибку. О методах оценки ошибочности моделей мы поговорим немного позже. А пока займемся сглаживанием нашего ряда по методу Холта-Винтерса . Начальные значения будем в данном случае определять по следующему алгоритму:

Теперь начальные значения определены.


Результаты всего этого безобразия:


Заключение

Удивительно, но такой простой метод дает на практике очень неплохие результаты, вполне сравнимые с гораздо более "математическими" - например, с линейной регрессией. И при этом реализация экспоненциального сглаживания в информационной системе на порядок проще.

Прогнозирование редких продаж. Метод Кростона

Прогнозирование редких продаж.

Суть проблемы.

Вся известная математика прогнозирования, которую с удовольствием описывают авторы учебников, основывается на предположении, что продажи в некотором смысле "ровные". Именно при такой картинке в принципе возникают такие понятия, как тренд или сезонность.

А что делать, если продажи выглядят следующим образом?

Каждый столбик здесь - продажи за период, между ними продаж нет, хотя товар присутствует.
О каких "трендах" здесь можно говорить, когда около половины периодов имеют нулевые продажи? И это еще не самый клинический случай!

Уже из самих графиков видно, что нужно придумывать какие-то другие алгоритмы предсказания. Хочется еще заметить, что эта задача не высосана из пальца и не является какой-то редкой. Практически все aftermarket ниши имеют дело именно с этим случаем - автозапчасти, аптеки, обеспечение сервисных центров,...

Формулировка задачи.

Будем решать чисто прикладную задачу. У меня есть данные о продажах торговой точки с точностью до дней. Срок реакции системы поставок пусть будет ровно одна неделя. Задача-минимум - спрогнозировать скорость продаж. Задача-максимум - определить величину страхового запаса исходя из уровня обслуживания в 95%.

Метод Кростона.

Анализируя физическую природу процесса, Кростон (Croston, J.D.) предположил, что

  • все продажи статистически независимы
  • случилась продажа или нет, подчиняется распределению Бернулли
    (с вероятностью p событие происходит, с вероятностью 1-p нет)
  • в случае, если событие продажи произошло, размер покупки распределен нормально

Это означает, что результирующее распределение имеет такой вид:

Как видим, от "колокола" Гаусса эта картинка сильно отличается. Более того, вершина изображенного холма соответствует покупке 25 единиц, тогда как если мы "в лоб" посчитаем среднее по ряду продаж, получим 18 единиц, а расчет СКО дает 16. Соответствующая "нормальная" кривая нарисована здесь зеленым.

Кростон предложил делать оценку двух независимых величин - периода между покупками и собственно размера покупки. Посмотрим на тестовые данные, у меня как раз случайно под руками данные о реальных продажах:

Теперь поделим исходный ряд на два ряда по следующим принципам.

исходный период размер
0
0
0
0
0
0
0
0
0
0
4 11 4
0
0
4 3 4
5 1 5
... ... ...

Теперь к каждому из получившихся рядов применим простое экспоненциальное сглаживание и получим ожидаемые значения интервала между покупками и величины покупки. А разделив второе на первое, получим ожидаемую интенсивность спроса в единицу времени.
Так, у меня есть тестовые данные по дневным продажам. Выделение рядов и сглаживание с малым значением постоянной дало мне

  • ожидаемый период между покупками 5.5 дней
  • ожидаемый размер покупки 3.7 единиц

следовательно недельный прогноз продаж составит 3.7/5.5*7=4.7 единиц.

Вообще-то это все, что нам дает метод Кростона - точечную оценку прогноза. К сожалению, этого недостаточно для расчета потребного страхового запаса.

Метод Кростона. Уточнение алгоритма.

Недостаток метода Кростона.

Проблема вообще-то всех классических методов состоит в том, что они моделируют поведение с помощью нормального распределения. И здесь сидит систематическая ошибка, поскольку нормальное распределение предполагает, что случайная величина может меняться от минус бесконечности до плюс бесконечности. Но это небольшая беда для достаточно регулярного спроса, когда коэффициент вариации невелик, а значит и вероятность появления отрицательных значений столь незначительна, что мы вполне можем на это закрывать глаза.

Другое дело - прогнозирование редких событий, когда матожидание размера покупки имеет малое значение, а СКО при этом вполне может оказаться как минимум такого же порядка:

Чтобы уйти от такой очевидной погрешности, было предложено пользоваться логнормальным распределением, как более "логично" описывающим картину мира:

Если кого-то смущают всякие страшные слова, не волнуйтесь, принцип очень прост. Берется исходный ряд, от каждого значения берется натуральный логарифм, и предполагается, что получившийся ряд уже ведет себя как нормально распределенный со всей стандартной математикой, описанной выше.

Метод Кростона и страховой запас. Функция распределения спроса.

Сел я тут и задумался... Ну хорошо, получил я характеристики потока спроса:
ожидаемый период между покупками 5.5 дней
ожидаемый размер покупки 3.7 единиц
ожидаемая интенсивность спроса 3.7/5.5 единиц в день...
пусть я даже получил СКО дневного спроса для ненулевых продаж - 2.7. А что там насчет страхового запаса ?

Как известно, страховой запас должен обеспечить наличие товара при отклонении продаж от среднего с определенной вероятностью. Метрики уровня обслуживания мы уже обсуждали, давайте для начала поговорим об уровне первого рода. Строгая формулировка задачи звучит так:

У нашей системы поставок есть время реакции. Суммарный спрос на товар за это время есть величина случайная, имеющая свою функцию распределения. Условие "вероятность необнуления запаса" можно записать как

В случае редких продаж функция распределения может быть записана следующим образом:

q - вероятность нулевого исхода
p=1-q - вероятность ненулевого исхода
f(x) - плотность распределения размера покупки

Заметьте, в своем исследовании в предыдущий раз все эти параметры я измерял для дневного ряда продаж. Поэтому если время реакции у меня тоже равно одному дню, то эту формулу можно успешно применить прямо сразу. Например:

предположим, что f(x) - нормальная.
предположим, что в области x<=0 вероятности, описываемые функцией очень низкие, т.е.

тогда интеграл в нашей формуле ищется по таблице Лапласа.

в нашем примере p = 1/5.5, так что

алгоритм поиска становится очевидным - задав SL, наращиваем k, пока F не превысит заданный уровень.

Кстати, в последней колонке что? Правильно, уровень обслуживания второго рода, соответствующий заданному запасу. И тут, как я уже говорил, сидит некоторый методологический казус. Давайте представим себе, что продажи происходят приблизительно с частотой один раз в... ну пусть будет 50 дней. И еще представим себе, что мы держим нулевой запас. Какой уровень обслуживания будет? Вроде как нулевой - нет запаса, нет и обслуживания. Ту же цифру нам даст и система контроля запаса, поскольку наблюдается постоянный out of stock. Но ведь с точки зрения банальной эрудиции в 49 случаях из 50 продажа точно соответствует спросу. То есть не приводит к потерям прибыли и лояльности клиентов , а ни для чего другого уровень сервиса и не предназначен. Этот несколько вырожденный случай (чую, спор начнется) является просто иллюстрацией того, почему даже очень малый запас при редком спросе дает высокие уровни сервиса.

Но это все цветочки. А что, если у меня изменился поставщик, и теперь время реакции стало равняться неделе, например? Ну, тут все становится совсем веселым, тем, кто не любит "многаформул", рекомендую далее не читать, а ждать статью про метод Виллемейна.

Наша задача состоит теперь в том, чтобы проанализировать сумму продаж за период реакции системы , понять ее распределение, и уже оттуда вытаскивать зависимость уровня сервиса от величины запаса .

Итак, функция распределения спроса за один день и все ее параметры нам известны:

По-прежнему результат одного дня статистически независим от любого другого.
Пусть случайное событие состоит в том, что за n дней случилось ровно m фактов ненулевых продаж. Согласно закону Бернулли (да ладно, я ж сижу и с учебника списываю!) вероятность такого события

где - число сочетаний из n по m, а p и q - опять те же вероятности.
Тогда вероятность того, что сумма проданного за n дней в результате ровно m фактов продаж не превысит величины z, составит

где - распределение суммы проданного, то есть свертка m одинаковых распределений.
Ну и поскольку искомый результат (суммарные продажи не превышают z) может быть получен при любых m, осталось просуммировать соответствующие вероятности:

(первое слагаемое соответствует вероятности нулевого исхода всех n испытаний).

Что-то дальше мне лень со всем этим возиться, желающие могут самостоятельно построить таблицу, аналогичную вышеприведенной в применении к нормальной плотности вероятности. Для этого надо только вспомнить, что свертка m нормальных рапределений с параметрами (a,s 2) дает нормальное же распределение с параметрами (ma,ms 2).

Прогнозирование редких продаж. Метод Виллемейна.

Что плохого в методе Кростона?

Дело в том, что во-первых, он подразумевает нормальность распределения размера покупки. Во-вторых, для адекватных результатов это распределение должно иметь невысокую дисперсию. В-третьих, хоть это и не так смертельно, применение экспоненциального сглаживания для нахождения характеристик распределения неявно подразумевает нестационарность процесса.

Ну да бог с ним. Для нас самое важное - реальные продажи даже близко не выглядят нормальными. Именно эта мысль сподвигла Виллемейна (Thomas R. Willemain) и компанию к созданию более универсального способа. А потребность в таком методе была продиктована чем? Правильно, необходимостью прогнозировать потребность в запасных частях, в особенности в автомобильных запчастях.

Метод Виллемейна.

Суть подхода состоит в применении процедуры бутстраппинга (bootstrapping). Словечко это родилось из старой поговорки "pull oneself over a fence by one"s bootstraps", что почти буквально соответствует нашему "вытащить себя за собственные волосы". Компьютерный термин boot, кстати, тоже отсюда. И смысл этого слова в том, что некая сущность содержит в себе необходимые ресурсы, чтобы саму себя перевести в другое состояние, и при необходимости такую процедуру возможно запустить. Именно такой процесс происходит с компьютером, когда мы нажимаем на определенную кнопку.

В применении же к нашей узкой задаче процедура бутстраппинга означает вычисление внутренних закономерностей, присутствующих в данных, и выполняется следующим образом.

По условиям нашей задачи время реакции системы 7 дней. Мы НЕ знаем и НЕ ПЫТАЕМСЯ предположить вид и параметры кривой распределения.
Вместо этого мы из всего ряда 7 раз случайно "выдергиваем" дни, суммируем продажи этих дней и записываем результат.
Повторяем эти действия, каждый раз записывая сумму продаж за 7 дней.
Желательно произвести опыт достаточно много раз, чтобы получить наиболее адекватную картинку. 10 - 100 тысяч раз будет очень неплохо. Здесь очень важно, чтобы дни выбирались случайно РАВНОМЕРНО во всем анализируемом диапазоне.
В итоге мы должны получить "как бы" все возможные исходы продаж ровно семи дней, причем с учетом частоты появления одинаковых результатов.

Далее разбиваем весь диапазон получившихся значений сумм на отрезки в соответсвии с той точностью, которая нам потребуется для определения запаса. И строим частотную гистограмму, которая как раз и покажет реальное распределение вероятностей покупок. В моем случае я получил следующее:

Поскольку у меня продажи штучного товара, т.е. размер покупки всегда целое число, то я и не разбивал на отрезки, оставил как есть. Высота столбика соответствует доле общих продаж.
Как видим, правая, "ненулевая" часть распределения не напоминает нормальное распределение (сравните с зеленым пунктиром).
Теперь на основании этого распределения несложно рассчитать уровни обслуживания, соответствующие разному размеру запаса (SL1, SL2). Так что, задав целевой уровень сервиса, сразу получаем потребный запас.

Но и это не все. Если ввести в рассмотрение финансовые показатели - себестоимость, прогнозная цена, стоимость содержания запаса, легко считается и доходность, соответствующая каждому размеру запаса и каждому уровню сервиса. Она у меня показана в последней колонке, а соответствующие графики вот:

То есть здесь мы узнаем максимально эффективный запас и уровень обслуживания с точки зрения получения прибыли.

Напоследок (в очередной уже раз) хочется спросить: "а почему мы уровень обслуживания основываем на ABC-анализе ?" Казалось бы, в нашем случае оптимальный уровень сервиса первого рода составляет 91% вне зависимости от того, в какой из групп товар находится. Тайна сия велика есть...

Напомню, что одно из допущений, на которых мы основывались - независимость продаж одного дня от другого. Это очень хорошее допущение для розницы. Например, ожидаемые продажи хлеба сегодня никак не зависят от его вчерашних продаж. Такая картинка вообще характерна там, где есть достаточно большая клиентская база. Поэтому случайно выбранные три дня могут дать такой результат

такой

и даже такой

Совсем другое дело, когда мы имеем относительно немного клиентов, особенно если они покупают нечасто и помногу. в этом случае вероятность события, аналогичного третьему варианту, практически нулевая. Излагая простым языком, если у меня вчера были большие отгрузки, скорее всего сегодня будет затишье. И уж совсем фантастически выглядит вариант, когда спрос будет велик в течение нескольких дней подряд.

Значит, независимость продаж соседних дней в этом случае может оказаться чушью собачьей, и гораздо логичнее предположить обратное - они тесным образом связаны. Что ж, нас этим не испугаешь. Всего-то навсего мы не будем выдергивать дни совершенно случайно , мы будем брать дни, идущие подряд :

Все даже интереснее. Поскольку ряды у нас относительно короткие, нам даже не надо заморачиваться со случайной выборкой - достаточно прогнать по ряду скользящее окно размером в срок реакции, и готовая гистограмма у нас в кармане.

Но тут есть и недостаток. Дело в том, что мы получаем гораздо меньше наблюдений. Для окна в 7 дней за год можно получить 365-7 наблюдений, тогда как при случайной выборке 7 из 365 - это число сочетаний 365! / 7! / (365-7)! Считать лень, но это намного больше.

А малое число наблюдений означает ненадежность оценок, так что копите данные - они лишними не бывают!

Заключительным этапом разработки плана маркетинга является определение объема продаж. Планированию объема продаж, как правило, предшествует прогноз сбыта. Прогноз сбыта продукции включает определение основных объемных показателей деятельности предприятия и осуществляется на основе прогноза спроса, определенного для масштабов предприятия. Прогноз сбыта – это тот центр, вокруг которого концентрируется все планирование бизнеса. Прогноз сбыта разрабатывается для любого периода упреждения. Долгосрочный прогноз сбыта позволяет заложить фундамент для производства новых видов продукции и технологических процессов.Среднесрочный – это обычно проекция существующих тенденций в будущее с учетом возможного воздействия предполагаемых изменений в численности покупателей, конъюнктуры рынка и изменений других факторов.

Краткосрочный прогноз сбыта может быть сроком до одного года, используется в качестве основы для планирования маркетинга, обоснования планов сбыта.

Прогноз сбыта содержит разные измерители, но среди них обязательно должны быть количество единиц продукции и цена. При разработке прогноза сбыта пользуются той же информацией, что и при прогнозе спроса. Это сведения о конъюнктуре рынка, состоянии экономики в целом, перспективы товарного предложения, условиях деятельности предприятия и т.д.

Прогноз сбыта и план сбыта строятся примерно по одной схеме, но план сбыта должен быть более детализированным, конкретным и увязан с финансово-организационными аспектами осуществления. Некоторые предприятия предпочитают не составлять план сбыта, ограничиваясь разработкой его прогноза и составлением политики сбыта.

Сегодня прогнозирование объема продаж осуществляется двумя методами:

    методы экспертных оценок;

    экономико-статистические методы.

Метод экспертных оценок . В основе этого метода лежит изучение мнений специалистов предприятий-изготовителей, потребителей продукции о возможных объемах продукции предприятия в планируемом периоде. На их основе экспертным путем определяются три вида прогноза объема продаж: оптимистический, пессимистический и вероятностный. Ожидаемый объем продаж (ОП) в плановом периоде может быть определен по формуле:

ОП = (О + 4В+ П)/6, (4.4)

где О, В, П – объемы продаж – соответственно оптимистический, вероятностный, пессимистический.

Так как любой прогноз носит вероятностный характер, то рассчитывается доверительный интервал возможного объема продаж:

Д = ОП± 2(О-П)/6, (4.5)

где О-П/6 – стандартное отклонение оценок продаж.

При расчете объема продаж методом экспертных оценок большое значение имеет квалификация экспертов. Знание особенностей продукции, рынка, конкурентов, тенденции их развития способствуют повышению достоверности получения данных.

Экономико-статистические методы включают широкий спектр различных методов. Не все они получили широкое распространение в практике планирования. Наиболее популярными являются:

    Метод экстраполяции – определяет объем продаж как функцию времени (или иного фактора). Как обычно в таких случаях необходим учет динамического (временного) ряда показателя;

    Метод скользящей средней величины продаж . Планируемый объем продаж определяется делением фактического объема продаж на продолжительность анализируемого периода. Скользящая средняя величина пересчитывается по мере получения новых значений;

    Метод доли рынка предприятия – в основе данные о среднегодовых темпах роста емкости целевого рынка в прошедшем периоде и планируемой доли предприятия в общем объеме продаж.

ОП = Ер× Иср Д/100, (4.6)

где Ер – емкость целевого рынка в отчетном году, ед.;

Иср – среднегодовой индекс роста емкости целевого рынка;

Д – планируемая доля предприятия на целевом рынке в прогнозируемый период, %.

Планирование сбыта может происходить на основе показателей прибыли и рентабельности, необходимых фирме. Такой расчет использует понятие «точка безубыточности», которая характеризует пограничный, т.е. нулевой по прибыльности объем работы.

ОП = ПОИ/ 1-ПИ´ (руб.), (4.7)

где ПОИ – постоянные издержки; ПИ´ – уровень переменных издержек в единице товара.

Знание пограничного объема, за которым для фирмы наступает сфера прибыльности, позволяет ей произвести выбор конкретной величины сбыта.

Использование точки безубыточности может способствовать обоснованию конкретного объема продаж с учетом исходных данных по прибыли и рентабельности, а также складывающихся издержек, позволяет обосновать тот объем, который обеспечит получение предусматривающихся конечных результатов деятельности.

Метод прямого счета – планирование осуществляется на основе рациональных норм расхода, потребления.

Эффективность применения того или иного метода прогноза продаж зависит от конкретных условий и специфики хозяйственной деятельности предприятия.

Работа по планированию объема продаж заканчивается формированием портфеля заказов. Портфель заказов состоит из трех разделов:

    текущих заказов, обеспечивающих ритмичную работу предприятия;

    среднесрочных и перспективных заказов.

На все заказы, в первую очередь, текущие, должны быть заключены договора.

На сегодняшний день наука достаточно далеко продвинулась в разработке технологий прогнозирования. Специалистам хорошо известны методы нейросетевого прогнозирования, нечёткой логики и т.п. Разработаны соответствующие программные пакеты, но на практике они, к сожалению, не всегда доступны рядовому пользователю, а в то же время многие из этих проблем можно достаточно успешно решать, используя методы исследования операций, в частности имитационное моделирование, теорию игр, регрессионный и трендовый анализ, реализуя эти алгоритмы в широко известном и распространённом пакете прикладных программ MS Excel.

В данной статье представлен один из возможных алгоритмов построения прогноза объёма реализации для продуктов с сезонным характером продаж. Сразу следует отметить, что перечень таких товаров гораздо шире, чем это кажется. Дело в том, что понятие “сезон” в прогнозировании применим к любым систематическим колебаниям, например, если речь идёт об изучении товарооборота в течение недели под термином “сезон” понимается один день. Кроме того, цикл колебаний может существенно отличаться (как в большую, так и в меньшую сторону) от величины один год. И если удаётся выявить величину цикла этих колебаний, то такой временной ряд можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей.

Аддитивную модель прогнозирования можно представить в виде формулы:

где: F – прогнозируемое значение; Т – тренд; S – сезонная компонента; Е – ошибка прогноза.

Применение мультипликативныхмоделей обусловлено тем, что в некоторых временных рядах значение сезонной компоненты представляет собой определенную долю трендового значения. Эти модели можно представить формулой:

На практике отличить аддитивную модель от мультипликативной можно по величине сезонной вариации. Аддитивной модели присуща практически постоянная сезонная вариация, тогда как у мультипликативной она возрастает или убывает, графически это выражается в изменении амплитуды колебания сезонного фактора, как это показано на рисунке 1.

Рис. 1. Аддитивная и мультипликативные модели прогнозирования.

Алгоритм построения прогнозной модели

Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели:

1.Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.

2.Вычитая из фактических значений объёмов продаж значения тренда, определяют величины сезонной компоненты и корректируют таким образом, чтобы их сумма была равна нулю.

3.Рассчитываются ошибки модели как разности между фактическими значениями и значениями модели.

4.Строится модель прогнозирования:

где:
F– прогнозируемое значение;
Т
– тренд;
S
– сезонная компонента;
Е -
ошибка модели.

5.На основе модели строится окончательный прогноз объёма продаж. Для этого предлагается использовать методы экспоненциального сглаживания, что позволяет учесть возможное будущее изменение экономических тенденций, на основе которых построена трендовая модель. Сущность данной поправки заключается в том, что она нивелирует недостаток адаптивных моделей, а именно, позволяет быстро учесть наметившиеся новые экономические тенденции.

F пр t = a F ф t-1 + (1-а) F м t

где:

F ф t-
1 – фактическое значение объёма продаж в предыдущем году;
F м t
- значение модели;
а –
константа сглаживания

Практическая реализация данного метода выявила следующие его особенности:

  • для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;
  • применение полиномиального тренда вместо линейного позволяет значительно сократить ошибку модели;
  • при наличии достаточного количества данных метод даёт хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.

Применение алгоритма рассмотрим на следующем примере.

Исходные данные: объёмы реализации продукции за два сезона. В качестве исходной информации для прогнозирования была использована информация об объёмах сбыта мороженого “Пломбир” одной из фирм в Нижнем Новгороде. Данная статистика характеризуется тем, что значения объёма продаж имеют выраженный сезонный характер с возрастающим трендом. Исходная информация представлена в табл. 1.

Таблица 1.
Фактические объёмы реализации продукции

Объем продаж (руб.)

Объем продаж (руб.)

сентябрь

сентябрь

Задача: составить прогноз продаж продукции на следующий год по месяцам.

Реализуем алгоритм построения прогнозной модели, описанный выше. Решение данной задачи рекомендуется осуществлять в среде MS Excel, что позволит существенно сократить количество расчётов и время построения модели.

1. Определяем тренд , наилучшим образом аппроксимирующий фактические данные. Для этого рекомендуется использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели).

Рис. 2. Сравнительный анализ полиномиального и линейного тренда

На рисунке показано, что полиномиальный тренд аппроксимирует фактические данные гораздо лучше, чем предлагаемый обычно в литературе линейный. Коэффициент детерминации полиномиального тренда (0,7435) гораздо выше, чем линейного (4E-05). Для расчёта тренда рекомендуется использовать опцию “Линия тренда” ППП Excel.

Рис. 3. Опция “Линии тренда”

Применение других типов тренда (логарифмический, степенной, экспоненциальный, скользящее среднее) также не даёт такого эффективного результата. Они неудовлетворительно аппроксимируют фактические значения, коэффициенты их детерминации ничтожно малы:

  • логарифмический R 2 = 0,0166;
  • степенной R 2 =0,0197;
  • экспоненциальный R 2 =8Е-05.

2. Вычитая из фактических значений объёмов продаж значения тренда, определим величины сезонной компоненты , используя при этом пакет прикладных программ MS Excel (рис. 4).

Рис. 4. Расчёт значений сезонной компоненты в ППП MS Excel.

Таблица 2.
Расчёт значений сезонной компоненты

Месяцы

Объём продаж

Значение тренда

Сезонная компонента

Скорректируем значения сезонной компоненты таким образом, чтобы их сумма была равна нулю.

Таблица 3.
Расчёт средних значений сезонной компоненты

Месяцы

Сезонная компонента

3. Рассчитываем ошибки модели как разности между фактическими значениями и значениями модели.

Таблица 4.
Расчёт ошибок

Месяц

Объём продаж

Значение модели

Отклонения

Находим среднеквадратическую ошибку модели (Е) по формуле:

Е= Σ О 2: Σ (T+S) 2

где:
Т-
трендовое значение объёма продаж;
S
– сезонная компонента;
О
- отклонения модели от фактических значений

Е= 0,003739 или 0.37 %

Величина полученной ошибки позволяет говорить, что построенная модель хорошо аппроксимирует фактические данные, т.е. она вполне отражает экономические тенденции, определяющие объём продаж, и является предпосылкой для построения прогнозов высокого качества.

Построим модель прогнозирования:

Построенная модель представлена графически на рис. 5.

5. На основе модели строим окончательный прогноз объёма продаж. Для смягчения влияния прошлых тенденций на достоверность прогнозной модели, предлагается сочетать трендовый анализ с экспоненциальным сглаживанием. Это позволит нивелировать недостаток адаптивных моделей, т.е. учесть наметившиеся новые экономические тенденции:

F пр t = a F ф t-1 + (1-а) F м t

где:
F пр t - прогнозное значение объёма продаж;
F ф t-1
– фактическое значение объёма продаж в предыдущем году;
F м t
- значение модели;
а
– константа сглаживания.

Константу сглаживания рекомендуется определять методом экспертных оценок, как вероятность сохранения существующей рыночной конъюнктуры, т.е. если основные характеристики изменяются / колеблются с той же скоростью / амплитудой что и прежде, значит предпосылок к изменению рыночной конъюнктуры нет, и следовательно а ® 1, если наоборот, то а ® 0.

Рис. 5. Модель прогноза объёма продаж

Таким образом, прогноз на январь третьего сезона определяется следующим образом.

Определяем прогнозное значение модели:

F м t = 1 924,92 + 162,44 =2087 ± 7,8 (руб.)

Фактическое значение объёма продаж в предыдущем году (F ф t-1) составило 2 361руб. Принимаем коэффициент сглаживания 0.8. Получим прогнозное значение объёма продаж:

F пр t = 0,8*2 361 + (1-0.8) *2087 = 2306,2 (руб.)

Кроме того, для повышения надёжности прогноза рекомендуется строить все возможные сценарии прогноза и рассчитывать доверительный интервал прогноза.

Дмитриев Михаил Николаевич, заведующий кафедрой экономики и предпринимательства Нижегородского архитектурно-строительного университета (ННГАСУ), доктор экономических наук, профессор.
Адрес: 603000, Н. Новгород, ул. Горького, д. 142а, кв. 25.
Тел. 37-92-19 (дом) 30-54-37 (раб.)

Кошечкин Сергей Александрович, кандидат экономических наук, ст. преподаватель кафедры экономики и предпринимательства Нижегородского архитектурно-строительного университета (ННГАСУ).
Адрес: 603148, Н. Новгород, ул. Чаадаева, д. 48, кв. 39.
Тел. 46-79-20 (дом) 30-53-49 (раб.)

Условное форматирование (5)
Списки и диапазоны (5)
Макросы(VBA процедуры) (63)
Разное (39)
Баги и глюки Excel (3)

Прогноз продаж в Excel


Скачать файл, используемый в видеоуроке:

Статья помогла? Поделись ссылкой с друзьями! Видеоуроки

{"Bottom bar":{"textstyle":"static","textpositionstatic":"bottom","textautohide":true,"textpositionmarginstatic":0,"textpositiondynamic":"bottomleft","textpositionmarginleft":24,"textpositionmarginright":24,"textpositionmargintop":24,"textpositionmarginbottom":24,"texteffect":"slide","texteffecteasing":"easeOutCubic","texteffectduration":600,"texteffectslidedirection":"left","texteffectslidedistance":30,"texteffectdelay":500,"texteffectseparate":false,"texteffect1":"slide","texteffectslidedirection1":"right","texteffectslidedistance1":120,"texteffecteasing1":"easeOutCubic","texteffectduration1":600,"texteffectdelay1":1000,"texteffect2":"slide","texteffectslidedirection2":"right","texteffectslidedistance2":120,"texteffecteasing2":"easeOutCubic","texteffectduration2":600,"texteffectdelay2":1500,"textcss":"display:block; padding:12px; text-align:left;","textbgcss":"display:block; position:absolute; top:0px; left:0px; width:100%; height:100%; background-color:#333333; opacity:0.6; filter:alpha(opacity=60);","titlecss":"display:block; position:relative; font:bold 14px \"Lucida Sans Unicode\",\"Lucida Grande\",sans-serif,Arial; color:#fff;","descriptioncss":"display:block; position:relative; font:12px \"Lucida Sans Unicode\",\"Lucida Grande\",sans-serif,Arial; color:#fff; margin-top:8px;","buttoncss":"display:block; position:relative; margin-top:8px;","texteffectresponsive":true,"texteffectresponsivesize":640,"titlecssresponsive":"font-size:12px;","descriptioncssresponsive":"display:none !important;","buttoncssresponsive":"","addgooglefonts":false,"googlefonts":"","textleftrightpercentforstatic":40}}