Что такое методы моделирования в экономике. Этапы создания модели. Тема:Моделирование экономических функций

По курсу

ОСНОВЫ МОДЕЛИРОВАНИЯ

И ПРОЕКТИРОВАНИЯ

ПРОЦЕССОВ»

Тема 1. Основы моделирования

Лекция 1. Введение в курс. Основы моделирования.

1.1. Цель и задачи курса.

Цель курса - приобретение навыков для:


  • оценки эффективности системы управления объектом, процессом, предприятием в целом;

  • принятия решения о необходимости замены либо совершенствования существующей системы;

  • правильной постановки задачи исполнителю;

  • квалифицированной экспертизы проекта;

  • обеспечения необходимых условий по реализации проекта.

Задачи курса- изучение следующих основных вопросов:


  • основные понятия, структура, принципы построения и характеристики систем управления объектами, технологическими процессами, производством в целом;

  • методы моделирования объектов и систем;

  • технико-экономические аспекты конструирования;

  • современные методы и средства конструирования и моделирования.

1.2. Понятия системы и модели.

Наблюдение, анализ и моделирование являются средствами познания и прогнозирования процессов, явлений и ситуаций во всех сферах объективной действительности. Наблюдения за явлениями природы, постановка экспериментов позволили установить физические законы. Эти законы проявляются в определенных количественных соотношениях между параметрами процесса или явления независимо от того, происходят ли они в действительности или их реализацию можно только представить.

Знание физических законов позволяет облечь их в ту или иную математическую форму, после чего, решая дифференциальные, алгебраические уравнения или производя другие вычисления, мы получим значения интересующих нас параметров или показателей.

В процессе моделирования очень важным является системное представление о рассматриваемом объекте (систематизация), первое и главное свойство которого - наличие цели, для реализации которой предназначается рассматриваемая совокупность предметов, явлений, логических представлений, формирующих объект. Цель функционирования системы редуцирует системные признаки, с помощью которых описываются, характеризуются элементы системы. При изменении цели другими могут стать как существенные системные признаки, так и связи с внешней средой.

Для выделения системы требуется наличие:


  • цели, для реализации которой формируется система;

  • объекта исследования, состоящего из множества элементов, связанных в единое целое важными, с точки зрения цели, системными признаками;

  • субъекта исследования (“наблюдателя”), формирующего систему;

  • характеристик внешней среды по отношению к системе и отражения ее взаимосвязей с системой.

Наличие субъекта исследования и некоторая неоднозначность, субъективность при выделении существенных системных признаков вызывают значительные трудности для однозначного выделения системы и соответственно ее универсального определения.

Изложенное выше дает возможность определить систему как упорядоченное представление об объекте исследования с точки зрения поставленной цели. Упорядоченность заключается в целенаправленном выделении системообразующих элементов, установлении их существенных признаков, характеристик взаимосвязей между собой и с внешней средой. Системный подход, формирование систем позволяют выделить главное, наиболее существенное в исследуемых объектах и явлениях; игнорирование второстепенного упрощает, упорядочивает в целом изучаемые процессы. Для анализа многих сложных объектов и ситуаций такой подход важен сам по себе, однако, как правило, построение системы служит предпосылкой для разработки или реализации модели конкретной ситуации или объекта.

Описанный подход предполагает ясность цели исследования и детерминированное к ней отношение всех элементов системы, взаимосвязь между ними и с внешней средой. Такие системы называют детерминированными.

Альтернативу представляют системы со стохастической структурой (случайной природы), когда либо отсутствует ясно выраженная цель исследования, либо по отношению к ней нет полной определенности, какие признаки считать существенными, а какие - нет; то же относится и к связям элементов системы с внешней средой.

Методы построения и исследования стохастических систем, как правило, более сложны, чем детерминированных. В некоторых случаях существуют способы сведения стохастических систем к специальным образом построенным детерминированным.

Структура и свойства модели зависят от целей, для достижения которых она создается. В этом органическое единство системы и модели. Если неизвестна цель моделирования, то неизвестно и с учетом каких свойств и качеств надо строить модель.

Модель определяется как формализованное представление об объекте исследования с точки зрения поставленной цели.

Различия между определениями системы и модели состоят в том, что систематизация предполагают лишь упорядочение, тогда как моделирование - формализацию взаимосвязей между элементами системы и с внешней средой.

Под моделированием понимается исследование объектов познания не непосредственно, а косвенным путем, при помощи моделей.

1.3. Типы моделей.

Модели можно различать по ряду признаков: характеру моделируемых объектов, сферам приложения, глубине моделирования, средствам моделирования. По последнему признаку методы моделирования делятся на две группы: материальное (предметное) и идеальное.

Материальное моделирование, основывающееся на материальной аналогии моделируемого объекта и модели, осуществляется с помощью воспроизведения основных геометрических, физических, других функциональных характеристик изучаемого объекта. Частным случаем материального моделирования является физическое моделирование, по отношению к которому, в свою очередь, частным случаем является аналоговое моделирование. Оно основано на аналогии явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими соотношениями. Пример аналогового моделирования - изучение механических колебаний с помощью электрической системы, описываемой теми же дифференциальными уравнениями. Так как эксперименты с электрической системой обычно проще и дешевле, она исследуется в качестве аналога механической системы.

Идеальное моделирование отличается от материального принципиально. Оно основано на идеальной, или мыслимой, аналогии. В экономических исследованиях это основной вид моделирования. Идеальное моделирование, в свою очередь, разбивается на два подкласса: знаковое (формализованное) и интуитивное.

Интуитивное моделирование встречается в тех областях науки, где познавательный процесс находится на начальной стадии или имеют место очень сложные системные взаимосвязи. Такие исследования называют мысленными экспериментами. В экономике до последнего времени в основном применялось интуитивное моделирование; оно описывает практический опыт работников.

При знаковом моделировании моделями служат схемы, графики, чертежи, формулы. Важнейшим видом знакового моделирования является математическое моделирование, осуществляемое средствами логико-математических построений.

1.4. Методы математического описания элементов и систем управления.

Анализ процессов, происходящих в системах, и эффективное решение задач расчета, проектирования и конструирования систем и устройств возможны лишь с применением языка и методов математики. Причем первым этапом при исследовании или конструировании системы является составление математического описания (математической модели) ее элементов и системы в целом.

Составление математического описания конструктивного элемента системы состоит из следующих последовательных процедур:


  • принятие исходных допущений;

  • выбор входных и выходных переменных;

  • выбор систем отсчета для каждой переменной;

  • применение физического, экономического или иного принципа, отражающего в математической форме закономерности протекания процесса.

Наиболее распространенной, а также наиболее общей и полной формой описания передаточных свойств систем (автоматических систем) и их элементов являются обыкновенные дифференциальные уравнения. Для большинства реальных элементов исходное уравнение, составленное строго в соответствии с законами физики, оказывается нелинейным. Это обстоятельство сильно усложняет все последующие процедуры анализа. Поэтому всегда стремятся перейти от трудно разрешимого нелинейного уравнения к линейному дифференциальному уравнению, обычно записываемого в символической или операторной форме, вида

(a 0 p n a 1 p n-1 . . . a n) y(t) = (b 0 p m b 1 p m-1 . . . b m) x(t), (1.1)

Где: x(t) и y(t) - соответственно входная и выходная величины элемента или системы;

a i , b i - коэффициенты уравнения;

p - оператор, сокращенное условное обозначение операции дифференцирования: d/dt = p.

Еще одним из распространенных методов описания и анализа автоматических систем является операционный. В основе метода лежит преобразование Лапласа

X(p) = L = x(t) e -pt dt, (1.2)

которое устанавливает соответствие между функциями действительной переменной t и функциями комплексной переменной p.

Функциональные элементы, используемые в системах управления, могут иметь самое различное конструктивное исполнение и самые различные принципы действия. Однако общность математических выражений, связывающих входные и выходные величины различных функциональных элементов, позволяет выделить ограниченное число так называемых типовых алгоритмических звеньев. Каждому такому звену соответствует определенное математическое соотношение между входной и выходной величинами. Если это соотношение является элементарным (например, дифференцирование, умножение на постоянный коэффициент), то и звено называется элементарным.

Алгоритмические звенья, которые описываются обыкновенными дифференциальными уравнениями первого и второго порядка, получили название типовых динамических звеньев. Наиболее часто встречающиеся звенья: безынерционное (пропорциональное), инерционное первого порядка (апериодическое), инерционное второго порядка (апериодическое или колебательное), интегрирующее, дифференцирующее, изодромное (пропорционально-интегрирующее), форсирующее (пропорционально-дифференцирующее), интегро-дифференцирующее (с преобладанием интегрирующих либо дифференцирующих свойств), запаздывающее.

Приведем примеры реальных устройств, которые соответствуют определению типового динамического звена.

Типичный пример безынерционного звена, являющегося простейшим среди всех типовых звеньев, - редуктор. Его передаточные свойства описываются алгебраическим уравнением

где k = b/a - передаточный коэффициент редуктора, который зависит от соотношения диаметров или чисел зубьев ведомой и ведущей шестерен.

Реальными интегрирующими звеньями являются электрические исполнительные двигатели постоянного и переменного тока. Дифференциальное уравнение (в операторной форме) идеального интегрирующего звена выглядит следующим образом:

где k – коэффициент пропорциональности, зависящий от конструктивных параметров устройства.

Запаздывающее звено передает сигнал со входа на выход без искажения его формы. Однако все мгновенные значения входной величины выходная величина принимает с некоторым отставанием (запаздыванием). Способностью задерживать сигнал во времени, не изменяя его формы, обладают многие элементы промышленных автоматических систем. В первую очкредь к таким элементам относятся транспортирующие устройства – конвейеры итрубопроводы.

Уравнение запаздывающего звена

Время запаздывания.tгде

В операционной форме передаточная функция запаздывающего звена выглядит следующим образом:

Если запаздывающее звено входит в контур системы управления, то характеристическое уравнение системы будет уже не простым алгебраическим, а трансцендентным. Решение и анализ трансцендентных уравнений связаны с большими трудностями. Поэтому часто в практических расчетах трансцендентную передаточную функцию (1.7) раскладывают в ряд Пада и, учитывая только первые два члена ряда, приближенно заменяют ее дробно-рациональной функцией:

(1.8)

Запаздывающие звенья в большинстве случаев ухудшают устойчивость систем и делают их трудно управляемыми.

В заключение необходимо отметить, что методика анализа, основанная на расчленении системы на типовые звенья, широко вошла в практику инженерных расчетов, выполняемых в процессе конструирования, и в настоящее время является доминирующей.

Лекция 2. Экономическое моделирование.

2.1. Предмет, область приложения и особенности экономического моделирования.

Любой набор уравнений, основанных на определенных предположениях и приближенно описывающих экономику в целом или отдельную ее отрасль (предприятие, процесс), можно считать экономической моделью.

Предметом экономических исследований практически всегда является построение и анализ моделей.

Усложнение производства, повышение ответственности за последствия принимаемых решений и требование принятия более точных решений привели к необходимости использования в управлении методов, подобных экспериментированию в технике или естественных науках.

Однако эксперимент в экономике стоит дороже или вообще невозможен.

Моделирование, как известно, в состоянии заменить эксперимент в экономике.

Это и служит причиной широкого применения моделирования в экономике, превратив его в одно из основных направлений повышения эффективности управления.

Опыт работы ведущих организаций в этой области показывает, что эффективность от применения моделирования обычно составляет 5- 15% снижения себестоимости, повышения производительности или улучшения других технико-экономических показателей.

Метод моделирования позволяет решать и многие другие, нерешенные до сих пор задачи, математизирует экономические расчеты. Внедрение моделирования в управление неразрывно связано с применением ВТ в экономических расчетах и с созданием автоматизированных систем управления производством (АСУП), представляющих собой совокупность наиболее совершенных методов управления (в первую очередь, основанных на экономико-математическом моделировании) и современных технических средств управления.

Использование этих средств при соответствующей квалификации занятых в сфере управления лиц обеспечивает с необходимой оперативностью, при требуемой полноте информации и минимальных трудовых затратах, получение и практическую реализацию оптимальных управленческих решений.

Как было указано ранее, моделирование делится на два основных класса - материальное и идеальное. Роль идеального моделирования особенно велика в экономических исследованиях, поскольку возможности проведения натурного эксперимента и эксперимента с материальными моделями в них ограничены.

Идеальное моделирование в свою очередь подразделяется на знаковое и интуитивное. Интуитивное моделирование в течение долгого времени оставалось главным и единственным методом анализа экономических процессов. Всякий человек, принимающий экономическое решение, руководствуется той или иной неформализованной моделью рассматриваемой им экономической ситуации. В случае интуитивных моделей, основанных на личном опыте принимающего решение лица, это зачастую приводит к ошибочным решениям. В еще большей степени интуитивные модели сдерживали развитие экономической науки, поскольку разные люди могут понимать интуитивную модель по-разному и давать на ее основе различные ответы на один и тот же вопрос. Проникновение в экономические исследования математических моделей создало основу для точного и строгого описания моделей и объяснения выводов, получаемых на их основе. Следует, однако, отметить, что использование математических (знаковых) моделей не уменьшает роли интуитивного моделирования. Так называемые имитационные системы синтезируют оба вида моделирования.

В настоящее время можно сказать, что человечество обладает глубоким пониманием методологии применения математики в естественных науках. И хотя в экономике имеются определенные аналогии с физическими процессами, экономическое моделирование намного сложнее. Это объясняется в первую очередь тем, что экономика охватывает не только производственные процессы, но и производственные отношения. Моделирование производственных процессов не представляет принципиальных трудностей и не намного сложнее, чем моделирование физических процессов. Моделировать же производственные отношения невозможно, не учитывая поведения людей, их интересов и индивидуально принятых решений.

Таким образом, во всех экономических системах можно выделить два основных уровня экономических процессов.

Первый уровень - производственно-технологический. К нему относится описание производственных возможностей изучаемых экономических систем. При математическом моделировании производственных возможностей экономической системы ее обычно разбивают на отдельные, “элементарные” в данной модели, производственные единицы. После этого необходимо описать, во-первых, производственные возможности каждой из единиц, и, во-вторых, возможности обмена ресурсами производства и продукцией между “элементарными” производственными единицами. Производственные возможности описывают при помощи так называемых производственных функций различных типов, а при описании возможностей обмена главную роль играют балансовые соотношения.

На уровне социально-экономических процессов определяется, каким образом реализуются производственные возможности, описанные при моделировании производственно-технологического уровня экономической системы. Существует огромное число вариантов принятия решений и распределения заданий, укладывающихся в технологические ограничения, которые задают производственные возможности системы. В математических моделях выделяют специальные переменные, значения которых определяют единственный вариант развития экономического процесса. Эти переменные принято называть управляющими воздействиями или управлениями. На уровне социально-экономических процессов определяется механизм выбора управляющих воздействий.

Итак, для описания функционирования экономической системы необходимо смоделировать оба уровня: производственно-технологический и социально-экономический. Как показывает опыт, описание второго уровня провести гораздо сложнее.

Существует, однако, большое число проблем, в которых описание социально-экономического уровня не является необходимым. Это так называемые нормативные проблемы, в которых необходимо указать, как надо задать управляющие воздействия, чтобы достичь наилучших в каком-то смысле результатов. При этом необходимо точно определить, что понимается под наилучшим результатом, т.е. сформулировать критерий, по которому можно оценивать и сравнивать различные управляющие воздействия. Критерий (также называют целевой функцией) является функцией переменных модели изучаемой системы. Обычно предполагается, что имеется единственный критерий выбора управления системой. Ищется такое управление, чтобы критерий достигал максимального (выпуск продукции, прибыль и т.д.) или минимального (затраты) значения. Такое значение управления находится методами оптимизации и называется оптимальным.

2.2. Классификация экономических моделей.

Все экономические модели можно в самом общем смысле разбить на два класса:


  • модели, предназначенные для познания свойств реальных или гипотетических экономических систем. Значения параметров таких моделей невозможно оценить по эмпирическим данным. Пример - модели, в которых технология какой-то экономики описывается параметрами большого числа возможных видов деятельности, значительная часть которых никогда не реализуется.

  • модели, параметры которых в принципе могут быть оценены по опытным данным. Эти модели могут служить для прогнозирования или принятия решений.

Второй класс моделей в свою очередь делится на три подкласса:


  • модель фирмы (предприятия) - может быть использована как основа для принятия решений на уровне фирм и аналогичных им организаций;

  • модели централизованно планируемого народного хозяйства - основа для принятия решений на уровне централизованного планирующего органа;

  • модели децентрализованной экономики или отдельного ее сектора - имеют применение при прогнозировании или могут служить основой для экономического регулирования.

Одна из наиболее важных методологических проблем построения экономических моделей - какими уравнениями описывать такие модели - дифференциальными или конечно-разностными.

Хотя многие индивидуальные решения принимаются через регулярные промежутки времени (раз в неделю, месяц и т.д.), наблюдаемые экономистом переменные представляют собой результат множества частных решений, принятых разными лицами в различные моменты времени. Кроме того, интервалы наблюдения большинства экономических переменных существенно больше интервалов между принятыми решений, которые эти переменные отображают. Эти обстоятельства приводят к мысли, что переменные типичной экономической модели следует рассматривать как непрерывные функции времени, и что такую модель следует описывать системой дифференциальных уравнений, причем, чем выше уровень модели - тем это ближе к истине.

Несмотря на то, что многие, если не большинство, модели, рассматриваемые в теоретической литературе, принадлежат к непрерывному типу, в прикладных экономических исследованиях модели обычно представляют в виде систем конечно-разностных уравнений. Это, по-видимому, объясняется трудностью оценки параметров систем стохастических дифференциальных уравнений по дискретным наблюдениям значений переменных. Однако для получения таких оценок нет принципиальных препятствий. Более того, методы, разработанные для оценки параметров дискретных моделей, могут быть с успехом применены и для оценки параметров непрерывных моделей. Следует отметить, что чем современней система управления предприятием (АСУ ТП, ИУС) - тем меньше дискретность, тем с большей степенью достоверности модель можно считать непрерывной.

Один из аргументов в пользу представления экономических моделей в виде дифференциальных уравнений - даже при отсутствии непрерывных наблюдений экономических переменных прогнозирование непрерывных траекторий изменения этих переменных может представлять большую ценность.

Например, предположим, что по убеждению руководства фирмы (предприятия) объем сбыта ее продукции тесно связан с национальным доходом страны. Тогда для прогнозирования сбыта очень полезно иметь прогноз непрерывной траектории изменения национального дохода, хотя измерения этой переменной и производятся только один раз в год. Непрерывная модель позволяет получить такой прогноз по дискретным наблюдениям экономических переменных за прошедший период времени.

Опыт показывает, что почти весь арсенал разработанных в науке моделей может найти применение в процессе принятия управленческих решений - гипотезы, наглядные аналоги, схемы, упорядоченная запись, графовая запись, схемы замещения, программные решения, производственный эксперимент, обобщение производственного опыта, материальные математические модели (аналоговые, структурные, цифровые и функционально-кибернетические), почти все виды физических моделей и др.

Различные виды этих моделей применяются более часто или редко, строятся и исследуются самими линейными руководителями, несущими полную ответственность за принятие и утверждение решений, или же их функциональными помощниками. Одни виды моделей применяются чаще или исключительно только при решении одной группы проблем, например, организационных, другие - при решении, например, проблем планирования и т.п., и не применяются совсем или очень редко при решении других задач.

Наибольшее распространение в экономике вообще и в процессе управления при оптимизации принимаемых решений в частности получают математические (или, как их обычно называют, экономико-математические) модели - идеальные (строящиеся и исследуемые без применения каких-либо специальных приспособлений, лишь в голове человека и на бумаге) или физические (реализуемые с помощью средств электроники и ВТ).

В виде схемы классификация совокупности экономико-математических моделей, используемых для оптимизации вырабатываемых управленческих решений, представлена на рис.2.1.

Наиболее полно разработанными и применяемыми на практике моделями, позволяющими оптимизировать управленческие решения, являются модели математического программирования. Эти модели позволяют делать выбор совокупности чисел (переменных в уравнениях), обеспечивающих экстремум некоторой функции (целевая функция или показатель качества принимаемого решения) при ограничениях, определяемых условиями работы системы.

Модели, в которых показатель качества решения и функции переменных системы являются линейными функциями, называют моделями линейного программирования. Если показатель качества или некоторые функции нелинейны - моделями нелинейного программирования. Нелинейное программирование в свою очередь подразделяется на выпуклое и невыпуклое. В теории выпуклого программирования подробнее других разработаны модели квадратического программирования, которые в связи с этим выделяют в отдельную группу моделей.

Модели математического программирования, в которых переменные в уравнениях по своему физическому смыслу могут принимать лишь ограниченное число дискретных значений, составляют группу моделей целочисленного программирования.

Если исходные параметры при переменных в моделях математического программирования могут изменяться в некоторых пределах, то такие модели называют моделями параметрического программирования.

Модели, с помощью которых решаются условно экстремальные задачи при наличии случайных параметров в их условиях, называют моделями стохастического программирования.

Модели, позволяющие точно или приближенно получать оптимальные решения задачи больших размеров по решениям ряда задач с меньшим числом переменных и ограничений, относятся к моделям блочного программирования.

Рис. 2.1. Классификация экономико-математических моделей.

К математическому программированию относится также и динамическое программирование. Модели динамического программирования позволяют находить оптимальное решение в условиях, когда на конечные результаты влияет результат осуществления решения на предыдущем этапе, а на него - результаты осуществления решения на предшествующем ему этапе и т.д.

В процессе оптимизации управленческих решений широко применяются также модели, основанные на математической теории графов. Частным видом таких моделей являются модели сетевого планирования, которые используются как на стадии оптимизации принимаемых решений, так и при организации их выполнения, контроле выполнения, т.е. являются сквозными моделями, используемыми на всех этапах, вплоть до осуществления принятого управленческого решения. В зависимости от возможности или невозможности точного определения продолжительности работ при построении сетевого графика модели сетевого планирования делятся на детерминированные и стохастические. К моделированию, основанному на теории графов, относится также решение транспортных задач на сети и другие приложения этой теории в экономической работе.

Для оптимизации управленческих решений применяются также и модели балансовых методов анализа, представляющие собой прямоугольные таблицы, в которых по одному из направлений (по горизонтали или по вертикали) проставлены отрасли или подразделения, участвующие в производстве какой-то совокупности продуктов, и указаны количественные данные о величине участия их в производстве, а по другому направлению представлены эти же отрасли или подразделения в качестве потребителя той же совокупности продуктов и указаны их потребности. Такие модели позволяют принимать решения, учитывающие взаимосвязи между отдельными подразделениями производства и необходимость баланса между производством и потреблением. Решения с использованием этих моделей направлены на пропорциональное развитие производства. Применяются они как на уровне межотраслевого планирования, так и при планировании в масштабе отрасли или даже отдельного предприятия.

Перечисленные виды моделей относят обычно к группе детерминированных моделей, хотя некоторые из них могут быть связаны с расчетами на основе применения элементов математической статистики и теории вероятностей, например, стохастическое программирование или стохастическое сетевое планирование.

Другую большую группу экономико-математических моделей, применяемых при оптимизации управленческих решений, составляют стохастические модели или модели, основанные на теории вероятностей и математической статистике.

К стохастическим моделям относятся модели теории анализа корреляций и регрессий, теории дисперсионного анализа, теории массового обслуживания, методов статистических испытаний, теории игр, теории статистических решений, теории информации, теории надежности, теории расписаний, теории запасов и др.

2.3. Основные этапы экономического моделирования.

Первый этап посвящен постановке проблемы. Одной из главных особенностей прикладного (не теоретического) исследования является участие в работе лица или организации, которые ставят проблему перед исследователями (исполнителем), пользуются результатами исследования, финансируют исследования. Такое лицо или организацию принято называть заказчиком. В исследовании операций используется также название: лицо, принимающее решение (ЛПР).

Обычно перед заказчиком стоит большое число разнообразных проблем, причем формулируются они в довольно общих чертах. Цель первого этапа исследования экономических процессов - найти среди проблем, интересующих заказчика, такие вопросы, которые могут быть решены на современном уровне развития экономико-математических методов.

При решении вопроса о выборе проблем, которые будут проанализированы с помощью экономико-математических моделей, прежде всего необходимо помнить, что прикладное исследование может быть проведено только тогда, когда в распоряжении исполнителя имеются проверенные модели, пригодные для описания объектов, которые необходимо моделировать. Если таких моделей нет, то прежде необходимо научиться строить модели интересующих нас объектов, а это обычно требует серьезных усилий и занимает достаточно продолжительное время. Для большей части задач планирования, в которых можно ограничиться лишь производственно-технологи-ческой стороной явлений, уже построены стандартные математические модели, так что исследователю часто остается лишь понять, какая из возможных моделей наиболее пригодна для анализа интересующих его проблем.

Второй этап исследования - построение математической модели изучаемого экономического объекта и ее идентификация. Этот этап состоит в выборе подходящей модели из всего множества известных экономических моделей и в подборе параметров этой модели таким образом, чтобы она соответствовала изучаемому объекту. Процесс подбора значений параметров модели называется идентификацией модели. Параметры производственных функций подбираются на основе анализа технологической информации и статистики экономических показателей.

Как правило, математическая модель не учитывает всех связей, которые возникают при функционировании реальных объектов, что может привести к выбору решения, не реализуемого в жизни. Чтобы этого не произошло, в модель должны быть введены некоторые дополнительные ограничения на переменные. При построении таких ограничений необходимо как можно полнее использовать знания и опыт заказчика.

Следующий после построения модели этап - исследование построенной модели. Предварительно необходимо выбрать способ анализа модели для решения проблем, сформулированных на первом этапе и состоящих при анализе производственно-технологических процессов в выборе наиболее подходящих для заказчика вариантов управления экономической системой.

Существует несколько основных методов анализа экономических моделей.

Первый из них состоит в качественном анализе модели, т.е. в выяснении некоторых ее свойств. Хотя методы качественного анализа очень полезны, такое исследование можно провести лишь в достаточно простых моделях. Кроме того, эти методы обычно связаны с задачей планирования только косвенно.

Если возможно сформулировать критерий, по которому заказчик может количественно оценить различные варианты развития системы, то единственное оптимальное управление (управляющее воздействие) и траекторию можно выбрать путем решения задачи оптимизации. Оптимизационная постановка состоит в следующем. Пусть критерий развития системы имеет вид

С[х(t), u(t)] dt, (2.1)

где х - конечноразностный вектор состояния системы;

u - вектор управляющих воздействий;

Т - некоторый момент времени.

Величина Т часто называется горизонтом планирования. Чем больше значения критерия (2.1), тем этот вариант развития системы больше удовлетворяет ЛПР.

После формулировки критерия оптимизационная постановка сводится к следующей математической задаче: найти среди пар T, удовлетворяющих принятым ограничениям, такую пару£ t £{u(t), x(t)}, 0 {u*(t), x*(t)}, на которой достигается максимальное значение критерия (2.1).

Далее поставленная задача решается одним из методов раздела прикладной математики - методов оптимизации. Полученное T, рекомендуется ЛПР в качестве£ t £управляющее воздействие u*(t), 0 наиболее подходящего воздействия на исследуемый экономический объект. Для выбора единственного оптимального управляющего воздействия u*(t) необходимо задать единственный критерий. В некоторых случаях это сделать невозможно. Кроме того, даже в случае единственного критерия задачу оптимизации удается решить далеко не всегда - модель может оказаться чересчур большой или чересчур сложной для современных методов оптимизации.

Для анализа экономико-математических моделей широко используется и имитационный подход, на основе которого удается преодолеть некоторые из трудностей, связанных с использованием оптимизационного метода. В имитационном подходе, вообще говоря, не требуется задавать критерий развития изучаемого объекта. Вместо него задается управление - либо в виде функции времени u(t), либо в виде функции состояния системы u(x). Подставляя эти заранее сформулированные функции в систему дифференциальных уравнений

X = f (x, u) (2.2)

с начальными данными х (0) = х 0 , можно построить траекторию системы. Если при этом не нарушаются принятые заранее ограничения, то заданное управление является допустимым. Сформулировав заранее некоторое число вариантов управления, можно построить траекторию системы для каждого из вариантов и представить эти варианты заказчику для последующего выбора. В этом подходе вместо проблемы формулировки единственного критерия возникает проблема выбора вариантов управления, которые будут изучаться в исследовании. Такой способ исследования называется методом вариантных расчетов и не очень экономичен. В общем же случае имитация, понимаемая как эксперимент с математической моделью, проводимый с использованием ВТ, является мощным современным методом анализа экономических проблем.

Особенностью оптимизационного и имитационного методов является то, что в них вместо бесконечного числа вариантов управляющих воздействий и соответствующих им траекторий рассматривается один (оптимальный) или несколько (конечное число при имитации) вариантов управления. Имеется еще один подход, предназначенный для оценки возможностей системы в целом, при всех допустимых управлениях - подход на основе множеств достижимости. Множеством достижимости Г(Т) для системы называется множество всех таких состояний х, в которые систему можно привести при помощи допустимого управления из точки х 0 за время Т. Изучая множество Г(Т), заказчик может выбрать наиболее удовлетворяющий его конечный результат развития системы.

Тема2. Основные понятия, структура и принципы построения систем управления технологическими процессами, производством.

Лекция 3. Основные понятия. Обобщенная структура системы управления.

3.1. Понятия объекта управления, технологического процесса, системы управления.

Устройство (или совокупность устройств), осуществляющее технологический процесс и нуждающееся в специально организованных воздействиях извне для осуществления его алгоритма функционирования, называется управляемым объектом.

Алгоритм управления - совокупность предписаний, определяющая характер воздействий извне на управляемый объект с целью осуществления его алгоритма функционирования.

Управление - процесс осуществления воздействий, соответствующих алгоритму управления. Обычно управление не может полностью компенсировать влияние возмущений в каждый момент времени и поэтому алгоритм функционирования управляемого объекта выполняется лишь приближенно.

Устройство, осуществляющее в соответствии с алгоритмом управления воздействие на управляемый объект, называется управляющим устройством. Алгоритм функционирования управляющего устройства и есть алгоритм управления.

Совокупность управляемого объекта и управляющего устройства, взаимодействующих между собой, называют системой управления. В одной системе может быть несколько управляемых объектов или управляющих устройств.

Технологический процесс - совокупность последовательных и параллельных операций, направленных на достижение требуемого производственного результата.

Совокупность технологического процесса и реализующего его оборудования называют технологическим объектом управления.

3.2. Этапы управления, структура современных систем управления объектами, технологическими процессами, производством.

Процесс управления можно разделить на четыре этапа циркуляции информации:

  • получение информации;
  • переработка информации (принятие правильного решения, влияющего на ход процесса);
  • использование информации (изменение хода производственного процесса в нужном направлении);
  • передача информации (этап в каждом “цикле” управления повторяется дважды).

В соответствии с указанными этапами технические средства систем управления можно подразделить на четыре группы:

  • средства получения (формирования) информации: датчики, сенсоры, измерительные приборы и т.п. (КИП);
  • средства передачи информации на расстояние: системы телемеханики (СТМ), в более общем случае - системы передачи информации (СПИ);
  • средства переработки информации: устройства вычислительной техники (УВТ) и другие специализированные устройства;
  • средства для использования информации: автоматические регуляторы, исполнительные механизмы (ИМ).

Рис.3.1. Обобщенная структура системы управления.

Структура современной системы управления производством на примере системы управления угольной шахты приведена на рис.3.2.

Рис. 3.2. Структура современной системы управления производством на примере системы управления угольной шахты.

ПУ СТМ – пункт управления системы телемеханики; КП СТМ – контролируемый пункт системы телемеханики; АКУ – аппаратура контроля и управления оборудованием; ВМП – вентилятор местного проветривания.

3.3. Устройства получения и передачи информации.

3.3.1. Устройства формирования информации (датчики).

Первичные преобразователи или датчики используются для получения сигналов, которые далее могут обрабатываться в электронных схемах, кодироваться с помощью АЦП, запоминаться и анализироваться компьютерами.

Если исследуемый (получаемый) сигнал настолько мал, что его маскируют шумы и помехи, то используются мощные методы выделения частот сигнала, такие, как синхронное детектирование, усреднение сигналов, многоканальные счетчики, а также корреляционный и спектральный анализы, с помощью которых требуемый сигнал восстанавливается.

Применяемые в промышленности датчики подразделяются на два больших класса: дискретные и аналоговые .

В дискретных датчиках выходной сигнал может иметь только два значения (например, “включено” - “выключено” и т.д.), а в аналоговых присутствует весь спектр измеряемой величины.

Существуют датчики аналоговые по принципу измерения, но дискретные по виду выходного сигнала. Это имеет место, когда для функционирования системы не обязательно иметь информацию о всех значениях какой-либо величины, а достаточно знать, превышает эта величина заданное (например, аварийное) значение или нет.

Все датчики подразделяются на контактные и бесконтактные по типу “съема” сигнала с объекта. Например, измерение силы электрического тока может быть произведено с помощью обычного амперметра, который включается в разрыв электроцепи, а также прибором, использующим эффект Холла, который реагирует на магнитное поле, создаваемое протекающим по проводнику током.

Пример простейшего дискретного датчика - датчик уровня жидкости, который сам по себе является контактом, который замкнут, если находится ниже уровня жидкости и разомкнут, если выше.

Дискретные датчики имеют либо релейный выход (контакт замкнут или разомкнут), либо ключевой , обычно полупроводниковый (ключ открыт или закрыт).

Аналоговые датчики можно подразделить на измеряющие электрические и неэлектрические величины.

К первой группе относятся измерители тока, напряжения, мощности, количества эл.энергии и т.д.

Наиболее широко распространенными представителями второй группы являются измерители температуры, уровня светимости, магнитного поля, усилия, перемещения, скорости и т.д.

^ Датчики температуры.

Термопары.

При соединении между собой двух проводов из различных металлов на их концах возникает небольшая разность потенциалов обычно около 1 мВ с температурным коэффициентом около 50 мкВ/°С. Такие соединения называют термопарами. Комбинируя различные пары сплавов, можно измерять температуры от -270 до 2500°С с точностью 0,5 - 2°С. Каждая пара изготовляется путем сварки (спайки) двух разных металлов таким образом, чтобы получилось небольшое по размеру соединение - спай. Типичные термопары: J - железо - константан (55% Cu - 45% Ni); Т - медь - константан; R - платина - 87% Pt- 13% Rh и т.п. Всего различают 7 основных типов термопар.

Термисторы - полупроводниковые устройства, у которых температурный коэффициент С. Точность 0,1 -°С. Диапазон от - 50 до 300° - 4%/»сопротивления (ТКС) С. Обычно имеют сопротивление несколько сотен Ом при комнатной°0,2 температуре. Не предъявляют высоких требований к последующим электрическим схемам. Наиболее часто применяется мостовая схема подключения термистора в сочетании с дифференциальным усилителем.

Термисторный метод измерения по сравнению с другими проще и точнее, но термисторы чувствительны к саморазогреву, хрупки и пригодны для относительно узкой области температур.

^ Платиновые термометры сопротивления представляют собой просто катушку из очень чистой платиновой проволоки с С. Чрезвычайно стабильны во времени, точны° 0,4%/»положительным ТКС С), имеют широкий диапазон измерения (от - 200 до°(0,02 - 0,2 С),°1000 но стоимость их высока.

^ Датчики температуры на ИС. Падение напряжения на полупроводниковом p-n переходе также зависит от температуры. В настоящее время выпускаются интегральные микросхемы, использующие этот эффект, с токовым, потенциальным либо частотным выходом. Типовой диапазон от - 55 до С, отличаются простотой внешних соединений.° 1±С, точность °125

^ Кварцевые термометры используют эффект изменения резонансной частоты кристалла кварца со специально подобранным сечением (типовые кварцевые генераторы имеют самый низкий ТК). Отдельные образцы таких датчиков имеют погрешность 10´4 -5 С в диапазоне от - 50 до° С.°150

Бесконтактное или дистанционное измерение температуры возможно с помощью пирометров и термографов. Удобно для измерения температуры очень горячих объектов или же объектов, расположенных в недоступных местах.

^ Деформация и смещение (положение, усилие).

Измерение таких физических переменных, как положение и усилие, само по себе достаточно сложно, и прибор для измерения этих величин должен включать в себя такие устройства, как тензодатчик, дифференциальный преобразователь линейных перемещений (ДПЛП) и т.д. Основным здесь является измерение перемещения.

Существует несколько наиболее часто используемых методов измерения положения, смещения (изменение положения) и деформации (относительного удлинения).

ДПЛП строятся в виде трансформаторов с подвижным сердечником, в которых возбуждается переменным током одна обмотка и измеряется индуцированное напряжение во второй обмотке.

Тензодатчики измеряют удлинение и(или) изгиб сборки из четырех металлических тонкопленочных резисторов, подвергаемой деформации. Электрическая схема тензодатчиков подобна мостовой: на два противоположно расположенных зажима подается постоянное напряжение, а с двух других снимается разность потенциалов.

^ Емкостные преобразователи. Очень чувствительный метод измерения перемещений реализуется с помощью двух близко расположенных друг к другу пластин или одной пластины, заключенной между парой внешних пластин. Включив такой конденсатор в резонансную схему, можно измерить очень малые изменения положения. Емкостные микрофоны используют этот принцип для преобразования акустического давления или скорости его изменения в электрический сигнал звуковой частоты.

Измерение углов поворота объекта производится с помощью специальных модификаций ДПЛП или синусно-косинусных преобразователей. В обоих случаях используется возбуждение переменным током, и угловое положение измеряется с точностью до угловой минуты.

Измерение положения с высокой точностью (1 мкм) можно проводить, используя отражение лазерного луча от зеркал, скрепленных с объектом, и считывая число интерференционных полос (интерферометрия).

^ Кварцевые кристаллы откликаются на деформацию изменением своей резонансной частоты. Этим обеспечивается очень точный метод измерения малых смещений или изменений давления.

Описанные методы позволяют измерять скорость, ускорение, давление, силу (массу).

В промышленности и бытовой технике широко используется оптико-механический способ измерения перемещения и скорости. Он основан на применении оптопары (фотодиод-светодиод или оптрон с открытым каналом) и диска с лепестками, приводимого во вращение поверхностью объекта, скорость перемещения которого необходимо измерить.

С помощью измерения магнитных полей возможно “бесконтактное” измерение силы тока и других производных величин. Такие датчики основаны на эффекте Холла , который вызывает появление поперечного напряжения на токонесущем куске материала (обычно это полупроводник), помещенном в магнитное поле.

Измерить частоту, период колебаний или временной интервал с высокой степенью точности достаточно просто имея генератор эталонной частоты и несложную цифровую схему обработки.

^ Измерение уровня излучения в настоящее время осуществляется в основном полупроводниковыми приборами - фотосопротивлениями, фотодиодами, фототранзисторами, и основано на эффекте возникновения фототока при попадании света (потока фотонов) на обратно смещенный р-n переход.

В обычных фотодиодах преобразование световой энергии в электрический ток происходит без усиления, а в лавинных фотодиодах и фототранзисторах - с усилением.

В промышленных системах управления важным элементом являются устройства гальванической развязки. Они реализуются чаще всего на базе трансформаторов или оптронов (оптронная развязка).

Оптрон - оптическая пара, состоящая из светодиода и фотодиода (фототранзистора, фототиристора), заключенных в одном корпусе.

Оптронная развязка обладает лучшими характеристиками, меньшими габаритами и стоимостью, чем трансформаторная.

Гальваническая развязка используется для повышения безопасности, помехоустойчивости и надежности аппаратуры.

Важнейшим элементом систем являются ЦАП и АЦП.

^ Цифро-аналоговый преобразователь (ЦАП) представляет собой устройство для автоматического декодирования входных величин, представленных числовыми кодами (цифровых сигналов), в непрерывные во времени сигналы, необходимые для работы с аналоговыми устройствами.

Аналого-цифровой преобразователь (АЦП) представляет собой устройство для автоматического преобразования непрерывно изменяющихся во времени аналоговых сигналов в эквивалентные значения числовых кодов.

3.3.2. Системы передачи информации (СПИ).

3.3.2.1. Структура СПИ.

Современные СПИ представляют собой сложные комплексы, состоящие из различных функционально взаимосвязанных элементов. Эти системы характеризуются не только большим числом элементов, но и иерархичностью структуры, избыточностью, наличием между элементами прямых, обратных и перекрестных связей.

Обобщенная модель СПИ
Канал

Источник - Приемник - Получатель

сообщений Передатчик сообщений

Канал (в узком смысле) - среда, используемая для передачи сигналов от передатчика к приемнику.

Передатчик - устройство, преобразующее сообщения источника А в сигналы S, наиболее соответствующие характеристикам данного канала. Операции, выполняемые передатчиком, могут включать в себя формирование первичного сигнала, модуляцию, кодирование, сжатие данных , и т.д.

Приемник реализует функцию обработки сигналов X(t) = S(t) f(t) на выходе канала с целью наилучшего воспроизведения (восстановления) переданных сообщений А на приемном конце.

3.3.2.2.Типичные виды передаваемых сигналов:

1) сигналы телемеханики (данные);

2) речевые (звуковые) сигналы;

3) видеосигналы.

3.3.2.3. Каналы связи.

Тип канала связи определяет в большинстве случаев тип, назначение, область применения и основные характеристики СПИ.

1) проводные каналы - информация передается по электрическим кабелям различного типа:

- телефонная пара - используется при невысоких требованиях к пропускной способности канала и помехоустойчивости, наиболее дешевый вид кабеля;

- витая пара - кабель состоит из попарно свитых проводников, что снижает удельную емкость, а следовательно, увеличивает полосу пропускания;

- коаксиальный кабель - сигнальный провод расположен строго по оси кабеля (аксиально), а общий провод - вокруг него, выполняя еще и функцию экрана, причем отделен от сигнального диэлектриком на определенное расстояние, что значительно снижает удельную емкость и повышает помехоустойчивость. Коаксиальные кабели обладают наибольшей пропускной способностью по сравнению с предыдущими типами (сотни МГц), но значительно дороже.

- силовая сеть электроснабжения - используется в качестве канала связи при невысоких требованиях к пропускной способности или когда прокладка отдельной линии связи невозможна либо нецелесообразна. Требует довольно сложных устройств присоединения к каналу.

2) радиоканал - информация передается путем распространения электромагнитных колебаний в свободной среде. Очень широкая область применения: промышленность, телефонная связь, телевидение, радиовещание, спутниковая связь и т.д. Требует значительных затрат при создании передающих станций для передачи на большие расстояния, поэтому обычно применяется при большом количестве абонентов.

3) оптический канал - может быть открытым и световодным.

- открытый оптический канал - информация передается световыми сигналами через атмосферу, в настоящее время практически не имеет применения из-за зависимости характеристик от состояния атмосферы.

- канал связи на волоконных световодах - световой поток распространяется по специально организованному каналу - световоду.

^ Волоконно-оптическая связь - самая новая отрасль в области СПИ, и наиболее перспективная во многих применениях, особенно в промышленности.

В качестве среды распространения световых колебаний используются волоконные световоды , светопроводящий слой (сердцевина) которых выполнен из кварца с очень высокой прозрачностью (в десятки тысяч раз прозрачнее обычного оконного стекла), а оболочка - из полимерных материалов, несущих защитную функцию. Сердцевина, в свою очередь, выполняется двухслойной, причем коэффициент преломления внешней части отличается от коэффициента преломления внутренней. За счет этого световой поток, попадающий в световод, многократно отражается от границы раздела слоев и таким образом проходит через световод.

^ Волоконно-оптические системы передачи (ВОСП), базирующиеся на применении волоконных световодов, обладают следующими основными преимуществами по сравнению с другими системами:

Невосприимчивость к электромагнитным помехам (особое значение имеет для применения в промышленности с опасными условиями);

Высокая пропускная способность и дальность передачи;

Малые габариты и масса кабеля;

Отсутствие ценных материалов в кабеле;

Полная гальваническая развязка между приемной и передающей частями;

Практически невозможность несанкционированного доступа в физический канал связи, и многие другие.

3.4. Виды систем управления.

Различают системы местного и дистанционного управления (телеуправление). Последние имеют место, когда производственный процесс рассредоточен на большой площади. Это имеет место в системах управления крупными предприятиями: металлургические заводы, предприятия горнодобывающей, химической и других отраслей промышленности, а также на объектах управления большой протяженности – нефтепроводы, линии электропередачи и т.д. В системах местного управления объекты управления обычно расположены компактно и на незначительном расстоянии от управляющего устройства. Например, металлообрабатывающие станки с ЧПУ, подъемные краны и т.д. В этом случае специализированные СПИ не используются.

Существуют автоматические и автоматизированные системы управления.

Система управления, в которой все функции управления процессом перекладываются с человека на автоматические устройства, называется автоматической системой управления.

В автоматизированной системе управления функции управляющего устройства выполняют как средства вычислительной техники, так и человек.

Системы управления могут быть классифицированы и по другим самым различным признакам. Классификация по алгоритмическим и неалгоритмическим признакам приведена на рис 3.3.

Рис.3.3. Классификация систем управления по алгоритмическим и неалгоритмическим признакам.

  • Вопрос 39. Формирование нового облика мирового сообщества в послевоенное время, социально-экономическое и общественно-политическое развитие СССР в послевоенный период. Фактор ВБА.
  • Выбор и экономическое обоснование метода получения заготовки

  • Министерство образования и науки украины

    ХарькОвский Национальний университет радиоэлектроники

    КОНСПЕКТ ЛЕКЦИЙ

    "Моделирование экономики"

    для студентов всех форм обучения специальности "Экономическая кибернетика"

    Протокол № 2 від 14.09.04

    Утверджено кафедрой

    “Экономическая кибернетика”

    Харків 2004

    Конспект лекций по курсу "Моделирование экономики" для студентов всех форм обучения специальности "Экономическая кибернетика" / Сост. Н.Б. Ивченко. – Харьков: ХНУРЭ, 2004 – 50с.

    Составитель Н.Б. Ивченко


    Вводная тема

    1. Предмет, сущность и задачи дисциплины. Содержание курса, взаимосвязь с другими дисциплинами.

    2. История развития экономико-математических методов (ЭММ) и моделей.

    1. При подготовке менеджеров в США и других странах используются два направления:

    1) Изучение отчетов о деятельности фирм (досье).

    2) Изучение ЭММ и моделей.

    В направлении 1 студенту надо за два часа изучить досье на фирму, например « Дженерал моторс » на 20 страницах и затем за 80 минут обсудить возможные направления деятельности фирмы и выбрать наилучшие. В направлении 2 используются банки моделей, статистические банки. В банке моделей находятся модели расчета цен на товары и услуги, модель месторасположения фирмы или торговой точки, модель разработки рекламного бюджета и др. Статистический банк – совокупность современных методик статистической обработки информации. Банк моделей - набор математических моделей, позволяющих принимать оптимальные управленческие решения. Эти методики и модели позволяют ответить на вопросы:

    1) Какие виды деятельности необходимо развивать

    2) Какие товары целесообразно выпускать

    3) По каким переменным лучше всего сегментировать рынок?

    4) Что произойдет с рынком, если цену товара поднять на 10 %, а расходы на рекламу увеличить на 20 % ?

    5) Что представляют собой переменные, влияющие на сбыт

    За последние годы разработано множество моделей, в основе которых лежат ЭММ.

    Предметом дисциплины являются методология, методы и процессы экономико-математического моделирования.

    Сущностью дисциплины является определение внутренних закономерностей экономических процессов и явлений. Это можно сделать с помощью моделей. Здесь остро встаёт вопрос об адекватности математической модели экономической структуры. Любая модель любого явления полагает абстрагирование от многих реальных свойств. Что же касается моделирования в экономике, то здесь реальный объект по своей сложности превосходит многие объекты физической природы. Вместе с тем проверка адекватности ЭМ модели с помощью единственного критерия истины – практики затруднена, так как экономический эксперимент связан зачастую с колоссальными затратами и поэтому не всегда возможен.

    Некоторые модели хорошо зарекомендовали себя. В последнее время три математических теории является основным инструментом при исследовании экономических задач: линейное программирование, модели типа « затраты - выпуск » и теория производственных функций.

    Целью дисциплины является формирование системы знаний по методологии, методике и инструментарию построения экономических моделей, их анализа и использования.

    К задачам дисциплины относятся изучение теории и получение практических навыков моделирования и анализа экономических объектов и процессов на макро-, мезо- и микроэкономических уровнях.

    Данный курс связан с дисциплинами математического цикла и экономического цикла.

    2. Первую экономическую модель в экономике сформулировал в 16-17 в.в. французский ученый, придворный врач Франсуа Кенэ. Кенэ долго размышлял над распределением в обществе труда и доходов. Он вычертил схему, которая вошла в историю под именем « Зигзаг доктора Кенэ » и « Арифметическая формула ».

    Настоящим первооткрывателем математической экономики в Европе признается французский экономист Антуан Огюстен Курно, который в 1838 году предложил математический аппарат фирмы, показал спрос как падающую функцию цены. А.О. Курно написал книгу « Исследование о математических принципах теории багатств ».

    В 1847 году в Лозанне вышла книга Леона Вальраса, в которой он писал

    «Чистая теория экономики есть наука, напоминающая во всем физико-математические науки». Леон Вальрас разработал теории общего конкурентного равновесия и построил обобщенную модель капиталистической экономики.

    Необходимо отметить работы по моделировапнию экономики В. Леонтьева, Дж. Фон Неймана, В. Парето, Э. Энгела, Ф. Эджворта.

    Василий Леонтьев (1906-1999 г.г.) - американский экономист, русский по происхождению. Основоположник направления, названого им методом « затраты – выпуск » или по отечественной терминологии, метода межотраслевого баланса. Получил Нобелевскую премию.

    Дж. Фон Нейман (1903 – 1957 г.г.) - американский математик, выходец из Венгрии. Разработал логические основы ЭВМ и автоматов, построил вместе с О. Моргенштерном теорию игр. Известна его математическая модель «расширяющейся » экономики.

    В. Парето (1848 – 1927 г.г.) - итальянский экономист и социолог. В 1897 году он изобрел формулу, что блага распределяются неравномерно, разработал принцип многоцелевой « оптимальности ».

    Немец Э. Энгель придумал теории функций спроса и эластичности показателей.

    Англичанин Ф. Эджворт предложил кривые безразличия.

    В конце 19 века в Европе и США получили большое развитие статистические исследования (из нужд астрономии для устранения ошибок в наблюдениях) и возник метод наименьших квадратов, регрессивный анализ (из нужд биологии). Они вошли важной составной частью в эконометрию.

    Среди отечественных ученых, внесших значительный вклад в ЭМ моделирование необходимо назвать Е.Е. Слуцкого, Л.В. Канторовича, В. С. Немчинова, Н. П. Федоренко, Г. А. Аганбегяна.

    В 1939 году свершилось событие, которое сначала никем не было замечено, но потом отозвалось во всем мире. Молодой профессор Ленинградского университета Л.В. Канторович (1912 – 1986 г.г.) надумал применить математические приемы к решению производственных задач. Такие задачи ему предложил существующий тогда Фанерный трест. Как раскроить фанерные листы с минимальными отходами, как распределить работу по станкам, чтобы результаты были максимальными? Результаты были поразительны. Математический расчет предлагал единственный наиболее эффективный вариант использования ресурсов.

    В 1958 году будущий академик В. С. Немчинов создал первую в стране ЭМ лаборатори. В 1963 г. на базе лаборатории Немчиновым был организован Центральный ЭМ институт. Директором был назначен Н. П. Федоренко, впоследствии академик. В Новосибирске был создан Институт экономики и организации промышленного производства АН СССР, который возглавил академик Г.А.Аганбегян.

    Ниже приведены данные об отечественных ученых, внесших наибольший вклад в моделирование экономики.

    Слуцкий Евгений Евгеньевич (1880 – 1948 г.г.) - советский математик, экономист и статистик, работал в областной теории спроса и потребления, вывел « уравнение Слуцкого » (характеризующее зависимость между изменением цен на отдельные товары и доходов потребителей с одной стороны, и структурой покупки спроса с другой).

    Канторович Леонид Витальевич (1912 – 1986 г.г.) - советский математик и экономист, внес вклад в развитие ценообразования, теории эффективности капиталовложений, а также развития ВТ. Лауреат Нобелевскую премии по экономике.

    Немчинов Василий Сергеевич (1894 – 1964 г.г.) – основоположник ЭМ направления науки в стране, руководил работами по межотраслевым балансам страны и регионов.

    Аганбегян Абел Газевич (р. 1932 г.), академик, основные труды по проблемам производительности труда, отраслевой оптимизации.

    Фельдман Григорий Александрович (1884 – 1958 г.г.), советский экономист, создал первую динамическую модель экономического роста.

    Федоренко Николай Прокофьевич (р. 1917 г.) академик, советский экономист, организатор и директор ЦЭМИ до 1985 года, работал в области общих проблем применения ЭММ в народном хозяйстве.


    Тема: Классификация ЭММ и моделей

    Классификационная схема ЭММ и моделей

    Понятие модели, виды моделей

    ЭМ методы – обобщающее название дисциплин, находящихся на стыке экономики, математики и кибернетики, введенное В. С. Немчиновым в начале 60-х годов 20 в. Общепринятой классификации ЭММ и моделей нет, на рис. 2.1

    Приведена примерная классификация ЭММ и моделей.

    Рассмотрим схему ЭММ и моделей:

    1. Математическая статистика – раздел прикладной математики, основанный на выборке изучаемых явлений.

    2. Математическая экономика и эконометрия – науки, занимающиеся проверкой экономических теорий на фактическом материале с использованием математической статистики и математических моделей.

    Эконометрия – наука изучающая конкретные количественные закономерности и взаимосвязи экономических объектов и процессов с помощью математических и математико-статических методов и моделей.

    Математическая экономика – наука, изучающая те же вопросы, что и эконометрия, только без статистической конкретизации экономических параметров, в виде общих экономических зависимостей.

    Математической экономикой – называют прикладную часть математической экономики.

    Производственные функции – ЭМ уравнения связывающие переменные величины затрат с величинами продукции, применяется в макроэкономических расчетах и на уровне предприятий.

    Межотраслевой баланс – каркасная модель экономической таблицы, в которой показываются многообразные натуральные и стоимостные связи в народном хозяйстве (за рубежом называют методом « затраты - выпуск »).

    Теория экономического роста – позволяет моделировать общее и социальное развитие стран в целом.

    Региональный анализ – исследует уровни экономического развития регионов, их специализации, отраслевые структуры.

    Пространственный анализ – исследует размещение населенных центров в связи с их экономическим значением, сферой сбыта продукции. Отрасли делятся на пространствоемкие (сельское хозяйство, рыболовство), точечные (обрабатывающая промышленность), сокращающая расстояние (транспорт и связь).

    3. Экономическая кибернетика рассматривает применение общих законов кибернетики в изучении экономических явлений (системный анализ экономики, теория экономической информации).

    Системный анализ экономики – рассматривает экономические объекты как систему, главный инструмент – модель изучаемой системы.

    Теория экономической информации - рассматривает процессы происходящие в экономике, только с информационной стороны, рационализацию потоков экономической информации, ее полезность.

    4. Методы принятия оптимальных решений (теория игр, массового обслуживания, управления запасами и др.).

    2. Модель – понятие, которое определить трудно. В одной работе было перечислено 31 определение. Это понятие знакомо каждому: игрушечный самолет – модель самолета. Фотоснимок пейзажа – это модель местности,

    s = vt (путь = скорость * на время, модель движущегося тела, математическая модель).

    Модели могут быть более или менее точные, более или менее простые или сложные, материальные (вещественные) и знаковые (например, графические).

    Материальные модели – модели гидроэлектростанций, воспроизводящие реку, горы;

    Термин «модель» происходит от латинского слова «modulus» - образец Моделью некоторого объекта, явления называется исскуственная система или объект, которые в определенных условиях могут заменить оригинал путем воспроизведения свойств и характеристик оригинала.

    Модель есть вспомогательным средством, которое в определенной ситуации заменяет оригинал при исследовании его свойств. Различают модели следующих видов

    1) физические (внешнего подобия),

    2) схематические (графические),

    3) словесные (вербальные),

    4) математические.

    Математические модели являются наиболее абстрактными.

    Под ЭМ моделями понимаются математические модели, применяемые для решения экономических задач и описания экономических процессов или явлений. ЭМ модели бывают

    1 теоретико-аналитические и прикладные,

    2 общие и частные,

    3 непрерывные и дискретные,

    4 статические и динамические,

    5 детерминированные и стохастические,

    6 матричные и др.

    Большое значение в экономики имеют оптимизационные модели. Они состоят из целевой функции или критерия оптимальности и ограничений.

    Целевая функция – (или функция цели, название оптимизируемой функции) – функция, оптимум которой требуется найти

    ƒ (х) opt (max, min).

    Критерий оптимальности – признак, характеризующий качество принимаемого решения.

    К = opt ƒ (х), x є X.

    Ограничения выражаются равенствами и неравенствами

    Важное свойство ЭМ моделей – их применимость к разным

    ситуациям. Например выпуск продукции и внесение удобрений можно описать одинаковой моделью.


    Лекция 3 Тема: Этапы экономико - математическогомоделирования

    1. Анализ этапов экономико-математического моделирования.

    2. Вербально-информационное описание как начальный этап моделирования.

    3. Модели мировой динамики.

    1. Процесс моделирования, в том числе и экономико-математического, включает в себя три структурных элемента: объект исследования; субъект (исследователь); модель, опосредующую отношения между познающим субъектом и познаваемым объектом. Рассмотрим общую схему процесса моделирования, состоящую из четырех этапов.

    Пусть имеется некоторый объект, который мы хотим исследовать методом моделирования. На первом этапе мы конструируем (или находим в реальном мире) другой объект – модель исходного объекта-оригинала. Этап построения модели предполагает наличие определенных сведений об объекте-оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации.

    На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования.

    На пример, одну из форм такого исследования составляет проведение модельных экспериментов, при которых целенаправленно изменяются условия функционирования модели и систематизируются данные о ее поведении. Конечным результатом этого этапа является совокупность знаний о модели в отношении существенных сторон объекта-оригинала, которые отражены в данной модели. Третий этап заключается в переносе знаний с модели на оригинал, в результате чего мы формируем множество знаний об исходном объекте и при этом переходим с языка модели на язык оригинала. С достаточным основанием переносить какой-либо результат с модели на оригинал можно лишь в том случае, если этот результат соответствует признакам сходства оригинала и модели (другими словами, признакам адекватности).

    На четвертом этапе осуществляются практическая проверка полученных с помощью модели знаний и их использование как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им. В итоге мы снова возвраща­емся к проблематике объекта-оригинала.

    Моделирование представляет собой циклический процесс, т. е. за первым четырехэтапным циклом может после­довать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется. Таким образом, в методологии моделирования заложены большие возможно­сти самосовершенствования.

    Перейдем теперь непосредственно к процессу экономико-математического моделирования, т. е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов: постановка экономической проблемы, ее качественный анализ; построение математической модели; математический анализ, модели; подготовка исходной информации; численное решение; анализ численных результатов и их применение. Рассмотрим каждый из этапов более подробно.

    1. Постановка экономической проблемы и ее качествен­ ный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свой­ства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

    2. Построение математической модели. Это этап формализации экономической проблемы, т.е. выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Построение модели подразделяется в свою очередь на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются агрегировано и приближенно. Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре.

    3. Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы тенденции их изменения и т. д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию; в таких случаях переходят к численным методам исследования.

    4. Подготовка исходной информации. В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

    5. Численное решение. Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях возможно проводить благодаря высокому быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей является единственно возможным.

    6. Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных (другими словами, должны быть произведены верификация и валидация модели). Применение численных результатов моделирования в экономике направлено на решение практических задач (анализ экономических объектов, экономическое прогнозирование развития хозяйственных и социальных процессов, выработка управленческих решений на всех уровнях хозяйственной иерархии).

    Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности, могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели; в этом случае исходная постановка задачи должна быть скорректирована. Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает на этапе подготовки исходной информации. Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы приспособиться к доступной исследователю информации.

    Выше уже сказано о циклическом характере процесса моделирования. Недостатки, которые не удается исправить на тех или иных этапах моделирования, устраняются в последующих циклах. Однако результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно получить полезные результаты, а затем перейти к созданию более сложной и более совершенной модели, включающей в себя новые условия и более точные математические зависимости.

    2. Для создания модели системы необходимо сначала дать ее вербально-информационное описание, (слово вербальный означает «словесный» от лат. “verbalis”)

    Его составные описывают:

    1) внешнюю среду;

    2) связи системы с внешней средой;

    3) элементарный состав системы, ее части, которые могут рассматриваться как системы меньшего размера;

    4) описание связей между элементами системы и ПС или главные связи между элементами и ПС, если нельзя дать все связи;

    5) действие системы..

    Некоторые части описания могут быть неполными. Иногда (если система сложная) моделирование оканчивается вербальным описанием. Если вербальная модель удачная, то она позволяет принимать эффективные решения, решать разные проблемы, разрабатывать способы управления системой.

    3.Использование численных математических методов моделирования позволило создать модели мировой экономики. Так как ресурсы Земли ограничены, то интересной является проблема исследования возможных последствий экономического роста. Эта проблема тесно связана с экономическими факторами.

    Американский ученый Дж. Форрестер предложил модель мировой динамики. Интегральная выходная величина модели – индекс материального роста жизни

    M = C/P * N(1-a),

    где С – суммарный капитал, (инвестиции в промышленность),

    Р – численность населения;

    N – наличие природных ресурсов;

    a – индекс сельскохозяйственного капитала.

    Все переменные здесь есть усредненными величинами по всему миру.

    Взаимосвязь переменных описывалась системой из 20 нелинейных уравнений. Использовалось имитационное моделирование.

    Результаты оказались неутешительными:

    1) если мир не изменится, то качество жизни будет снижаться после max в 70-е годы.

    2) увеличение капиталовложений в промышленность вызовет загрязнение окружающей среды.

    3) некоторое стабильное состояние можно достичь, если уменьшить капиталовложения в промышленность, рождаемость и пользование природных ресурсов.

    Исследования мировой динамики продолжил Д.Медоуз. Его модель характеризуется величинами:

    1 – наличие ресурсов;

    2 – объемом производства продуктов питания на душу населения;

    3 – численность населения;

    4 – объемом промышленной продукции на душу населения;

    5 – уровнем загрязнения окружающей среды;

    6 – общим темпом смертности;

    7 – общим темпом рождаемости;

    8 – объемом производства услуг на душу населения(за год).

    Процесс построения модели включал 4 этапа.

    1) определение связей между 8 характеристиками системы;

    2) составление зависимостей между характеристиками;

    3) компьютерный расчет общего поведения этих зависимостей во времени;

    4) исследования влияния на глобальную систему различных стратегий развития.

    Согласно этой модели производство продуктов питания и численностъ населения растут, пока их не затормозит быстрое снижение ресурсных запасов. Загрязнения природной среды и численность населения растут после пика промышленного развития настолько, что вызовут экономическую, демографическую и экологическую катастрофу.

    Чтобы убрать крах мировой системы, в модель последовательно вводили 4 стратегии технического прогресса:

    1) широкое использование ядерной энергетики, чтобы удвоить ресурсы, переработка отходов. 2) контроль загрязнения природной среды. 3) увеличение продуктивности земли в 2 раза. 4) контроль за рождаемостью. Однако моделирование показало, что даже при одновременном использовании всех 4 стратегий уменьшается производство продуктов питания и промышленной продукции на душу населения.

    Тогда разработали стабилизирующую стратегию, которая включала следующие предложения:

    1) идеальный контроль за рождаемостью (2-е детей в семье);

    2) увеличение амортизационных отчислений;

    3) переработка вторичных ресурсов, контроль над состоянием окружающей среды, увеличение сроков службы всех видов капитала, обновление эрозийных земель.

    Эти мероприятия должны были быть введены ещё в 1975г., иначе выход мира до стабильного состояния будет невозможен.

    Эти выводы вызвали оживленную дискуссию. К критическим мнениям относились: сильная агрегированность модели, игнорирование больших различий между регионами Земли.

    Другие модели были вообще необъяснимыми.

    В научных кругах модели мировой динамики вызвали "футурошок" т.е.


    Тема:Моделирование экономических функций

    1 Функция издержек

    2 Функция спроса

    3 Функция предложения

    4 Функция полезности

    1. Анализ издержек содержит изучение влияния издержек производства на объем производства и другие ТЭ показатели.

    Чаще всего рассматривается функция вида:

    Z=F(x)+Σbivi, i=1,n,

    где Z - суммарные издержки;

    x- количество продукции;

    vi - другие условия, отражают различную структуру ОПФ, разные условия производства, разную организацию труда в различных отраслях.

    Поделим обе части на X

    ,

    где - удельные издержки.

    Отвлечемся от влияния факторов, что, возможно при изучении издержек в общегосударственных масштабах. Тогда

    Линейная функция издержек имеет вид:

    Функция удельных издержек будет убывающей. Параметры можно интерпретировать с помощью предельных величин

    фактор ∆Vi при неизменных уровне выпуска продукции увеличивает издержки на ∆Z,

    Если ∆Vi=1, то ∆Z=bi..

    Когда Viвыражает какой- то процесс или такое изменение организационной структуры, при котором издержки должны снизится, то biдолжно иметь отрицательный знак.

    2. Функция спроса выражает зависимость спроса от экономических (доходы, цены) и внешнеэкономических (потребительские привычки) факторов. Функции спроса могут быть как макроэкономическими, если охватывают всю сферу потребления и микроэкономическими описывающими спрос индивидуальных потребителей.

    D (p) - функция спроса или просто спрос (по англ. “demand” - спрос)(количество товара покупаемого на данном рынке за единицу времени по цен Р за единицу). Фундаментальное свойство функции спроса выражает следующая аксиома: функция спроса является убывающей, при увеличении цены величина спроса на товар уменьшается к 0, при уменьшении цены товара величина спроса увеличивается.

    Рассмотрим следующие функции спроса:

    а) линейно убывающая

    б) обратная

    D (p)=1/p, р>0,

    в) логарифмическая

    D (p)=ln (1+p)/p,p>0.

    При изменении условий на рынке или вне его функция спроса может изменится, тогда говорят об изменении спроса. Изменение спроса надо отличать от изменения величины спроса при передвижении по графику данной функции спроса. Например, при повышении цен на бензин вполне может повысится спрос на велосипеды. Это означает, что вся кривая спроса передвинется вправо.

    Рассмотрим математические характеристики кривой спроса и их экономические иллюстрации. Производная функции спроса по цене

    показывает насколько изменится величина спроса при изменении цены товара на 1 ед. Т.к. функция спроса убывающая, то эластичность спроса по цене показывает на сколько % изменится величина спроса при изменении цены товара на 1 %.

    Обозначается эластичность

    3. S(p) - функция предложения или предложение (от англ.“supply”- предложение)(количество товара поставляемого на данный рынок за единицу времени при цене р за ед. товара). Функция предложения является возрастающей. Аксиома предложения: при увеличении цены величина предложения товара неограниченно увеличивается, при уменьшении цены величина предложения уменьшается, приближаясь к 0.

    Различают функции предложения

    а) линейно возрастающая

    S (p) = - C + dp,,

    б) степенная

    ,

    в) логарифмическая

    При изменении условий на рынке или вне него функция предложения может изменится, тогда говорят об изменении предложения. При открытии поблизости месторождения алмазов может увеличится предложение необработанных алмазов а возможно через некоторое время - ювелирных украшений.

    Рассмотрим математические характеристики кривой предложения и их экономические иллюстрации.

    Производная функции по цене

    показывает насколько изменится величина предложения при изменении цены товара на 1 ед. Т.к. функция предложения возрастающая, то

    Эластичность предложения по цене показывает на сколько % изменится предложение при изменении цены товара на 1 %. Обозначается эластичность

    Рассмотрим:

    ;

    б) ;

    ;

    4 Система предпочтений индивида указывает, какой из двух наборов предпочтительнее для него. Во многих случаях, однако, весьма желательно и удобно оцени вать привлекательность набора товаров количественно , приписать каждому набору X из пространства товаров С какое-то число и(Х ). Получается функция и: С R . Главное требование к такой функции, чтобы она отражала отношение (слабого) предпочтения на С, т.е. удовлетворяла условиям:

    и(Х) < u { Y ), если и только если X < Y

    и(Х) = u ( Y ), если и только если X ~ Y , значит и

    и(Х) < и(У), если и только если Х< Y .

    Такая функция называется функцией полезности. Видно, что функция полезности постоянна на каждом классе равноценности, так что ее и вполне правильно представлять себе как функцию, "пересчитывающую" классы равноценности в сторону все большего предпочтения наборов товаров.

    Работать с функцией полезности гораздо удобнее, чем с системой.Однако математики выяснили, что если на систему не накладывать никаких ограничений, кроме уже рас­смотренных ранее, а именно, транзитивность, совершенность и рефлексивность, то функции полезности может и не существовать. Тем не менее при некоторых естественных условиях, наложенных на систему функция полезности существует.

    Теперь можно сформулировать условия, при которых существует функция полезности.

    ТеоремаЕсли система предпочтений непрерыв­на, то существует непрерывная функция полезности.

    Рис.4.1

    Надо отметить, что функцияполезности, если она существует, не определяется единственным образом (рис.4.1).

    Основные свойства функции полезности вытекают из ее связи и подчиненности системе предпочтений. Функция полезности неубывающая и дифференцируема.

    Состояние рынка, при котором спрос равен предложению называется равновесным, а цена, при которой достигается равенство с проса и предложения -называется р ав новесной ценой

    ТеоремaПусть функции спроса и предложения непрерывны и,D(р 0) > S(p 0) при некоторой цене р 0 ; тогда существует состояние равновесия.


    Тема: Типы производственных функций и их свойства

    1. Типы производственных функций

    2. Предельный анализ факторов и однородность производственных функций

    3. Эластичность производственных функций

    4. Замещение факторов в производственных функциях

    5. Производственная функция Кобба-Дугласа

    1. Производственные функции можно разделить по количеству используемых переменных, по виду функций и по их свойствам.

    Под производственной функцией понимают уравнение, связывающее выпуск продукции и затраты. Производственные функции по количеству переменных различают:

    Однофакторные: или ;

    Двухфакторные: ;

    Многофакторные.

    По аналитическому виду:

    А) линейные производственные функции

    .

    Здесь параметры и выражают производительность факторов и , то есть показывают абсолютный прирост производства, когда один фактор остается неизменным, а другой возрастает на единицу. Линейные функции часто используются в краткосрочных и среднесрочных экономических моделях.

    б) степенные производственные функции

    Параметры и выражают эластичность уровня производства по отношению к факторам и , то есть показывают относительный прирост продукции, связанный с относительным приростом и .

    Объем трудовых ресурсов в натуральном количестве,

    Число рабочих, число человеко-дней,

    Выпуск продукции в стоимостном или натуральном виде.

    в) более сложные производственные функции CES

    ,

    где - параметр, выражающий эластичность замены ОФ и занятости.

    2. Предполагается, что производственные факторы удовлетворяют аксиоме. Существует подмножество производства страны затрат, называемое экономической областью , в которой увеличение любого вида затрат не приводит к уменьшению выпуска. Если - две точки этой области, то влечет .

    Эта аксиома утверждает, что производственные факторы не какая-то совершенно абстрактная функция, придуманная теоретиками - математиками.

    Она отражает утверждение, пусть и не на всей своей области определения, а только на ее части: в мало-мальски разумной экономике увеличение затрат не может привести к уменьшению выпуска.

    В дифференциальной форме это выражается в том, что в этой области первые частные производные функции неотрицательны: - непрерывная и дифференцируемая

    Эти производные называются предельными продуктами.

    Можно составить производственные функции данного производства даже ничего не зная о производстве. Надо только поставить у возможного производства счетчик (человека на какое-то автоматическое увеличение), который будет фиксировать увеличиваемые ресурсы и - количество продукции, которую производство произвело. Если накопить достаточно много такой статической информации, учесть работу производства в различных режимах, то можно прогнозировать выпуск продукции, зная объем ввезенных ресурсов, а это и есть производственная функция.

    3 Понятие «однородность производственной функции» включает в себя следующее ее свойство: равномерное увеличение всех производственных факторов вызывает пропорциональное увеличение продукта. Выразим это математически:

    Функция однородна в степени h. если

    Таким образом, когда каждая независимая переменная принимает значения , значение функции возрастает в раз.

    Величина показывает степень использования производственных факторов или их эффективность. В случае, когда , эффективность производственных факторов будет равна 1, при говорят, что производственные факторы обладают растущей эффективностью и соответственно при эффективность факторов снижается

    4. Эластичностью экономического показателя называется его способность реагировать в большей или меньшей степени на изменение другого показателя.

    Определим эластичность объема производства по некоторому фактору как отношение темпов прироста к темпам прироста этого фактора.

    Рассчитаем коэффициент эластичности по основным фондам :

    ;

    ;

    ;

    Здесь - непрерывная дифференцируемая функция по .

    Так как на практике это условие выполняется редко, то коэффициент эластичностьи часто выражается через приросты.

    ;

    Пусть , тогда

    Равен относительному изменению .

    ;

    Коэффициент эластичности показывает как изменяется (в %) величина , если величина возрастает на 1%.

    Если коэффициент эластичности в какой-нибудь точке равен 1, то относительная и предельная величины равны друг другу. Это выполняется в точках, в которых относительная величина достигает минимума или максимума.

    Иногда экономические показатели характеризуются коэффициентом эластичности. Если , то говорят, что экономический показатель эластичен по ; если , то говорят, что экономический показатель абсолютно эластичен.

    Так как производственная функция содержит несколько факторов, то следует исследовать эластичность по всем факторам. Вводится понятие частной эластичности.

    Для функции параметры и являются частными коэффициентами эластичности.

    4. Понятие замещения основывается на предположении, что производственные факторы могут заменять друг друга, и показывает, как при неизменной величине продукта можно изменять соотношения между факторами. Для можно поставить вопрос, насколько должно измениться число занятых при некотором изменении объема ОПФ, чтобы величина произведенного продукта осталась неизменной. Оценка замещения и определяется как отношение двух предельных величин и называется предельной нормой замещения.

    или .

    Например, если единичное изменение увеличивает на 6 единиц, а единичное изменение увеличивает на 3 единицы, можно сказать, что остается неизменным, если при росте на одну единицу число занятых увеличивается на 2 единицы. В этом случае

    Различают ПФ (рис. 5.2, а и б).


    а) Пф с взаимозаменяемыми факторами

    б) Пф с дополняющими факторами

    На рисунке изображены изокванты производственных функций. Каждая точка показывает значение продукта, произведенного с помощью комбинации факторов . Множество этих точек лежит на поверхности, называемой поверхностью производственных функций. Пересечение этой поверхности с плоскостями, параллельными плоскости , образуют кривые, называемые изоквантами. Каждая точка на этих кривых дает комбинацию производственных факторов, соответствующих одинаковому значению производственных функций.

    Если производственные факторы можно заменять лишь в фиксированных пропорциях, то говорят, что производственные функции обладают нулевой предельной нормой замены.

    5. ПФ Кобба-Дугласа (CDPF) принадлежит к наиболее известным, широко применяемым ПФ.

    Ученые Дуглас и Кобб предприняли попытку оценить значения , используя данные по американской обрабатывающей промышленности за период с 1899 по 1922 года – индекс производства , индекс основного капитала , индекс труда . Они пришли к выводу, что

    (таким образом имеет место неизменный эффект масштаба). С тех пор формула

    для которой называют функцией Кобба-Дугласа. Функция наиболее часто используемая претерпела изменения

    ,

    где - темп научно-технического прогресса. При

    Предположим, что каждый производственный фактор вырос на %, тогда значения этих факторов будут равны:

    Величина конечного продукта вычисляется:

    ;

    При конечный продукт возрастает больше чем на r%, при - меньше, чем на %, а при - на %.

    Частные коэффициенты эластичности равны

    ; .

    Прологарифмируем CDPF

    Производственная функция имеет линейный вид.

    .

    ,

    то есть при увеличении каждого производственного фактора на % выпуск продукции увеличивается на %.


    Тема: Модели типа «затраты – выпуск» В. Леонтьева

    План

    1. Статическая модель «затраты – выпуск» В. Леонтьева

    2. Элементарная теория статической модели «затраты – выпуск»

    3. Этапы построения модели «затраты – выпуск»

    1 Рассмотрим обобщенную модель некоторой экономической системы (ЭС)


    Рассмотрим выбранное описание.

    Внешней средой является природа, общество и других экономических систем. На вход подаются ресурсы: природные, трудовые, интеллектуальная информация, капиталы и тому подобное. Экономическая система состоит из ПС производства продукции и ПС распределения. Часть валовой продукции используется для производства другой продукции, а часть используется для потребления, накопления и экспорта.

    Например:

    Потоки продукции, циркулирующие между экономическими системами, показаны на рис. 6.2.



    Пусть - количество отраслей продукции,

    Вектор валовой продукции (вектор выпуска),

    Вектор конечной продукции,

    Вектор промежуточной продукции (вектор затрат),

    где - валовая продукция -й отрасли,

    Конечная продукция -й отрасли,

    Промежуточная продукция -й отрасли.

    Экономическая система характеризуется матрицей А (производственная матрица).

    где - количество продукции -й отрасли, которая затрачивается на производство единицы продукции -й отрасли (предполагается, что в каждой из отраслей производство осуществляется одним технологическим способом). Отрасли выпускают однородную продукцию.

    Учитывая, что на производство валовой продукции всех видов затрагивается , , - межотраслевые потоки -й продукции, векторы и свяжем линейным уравнением:

    Вид продукции 1 2 …….
    1
    2
    ……. ……. ……. ……. ……. …….

    которую можно привести к виду

    .

    Если , то есть ЭС использует весь валовый продукт на собственные нужды, то такая экономика и ее модель называются закрытыми. Если вырабатывается хоть один вид, ненулевой конечной продукции, то экономика и ее модель называются открытыми.

    Модель Леонтьева можно использовать для того, чтобы:

    1) вычислить по заданному количеству конечной продукции () необходимое количество валовой продукции ().

    2) При заданном уровне выпуска валовой продукции () вычислить сколько будет конечного продукта ().

    3) Исследовать влияние изменения технологии на производство, то есть вычислить как влияют изменения на и .

    Для удобства математического исследования модель записывают в векторно-матричной форме

    или в виде ,

    где - единичная матрица размера , ,

    Символ Кронекера.

    «дельта» а - производственная матрица ЭС.

    С точки зрения общей теории управления задача 2) известна как задача наблюдения для модели, которая отображает процесс распределения валовой продукции.

    Задача анализа

    Задача синтеза

    (показывает процесс планирования валовой продукции по заданному вектору конечной продукции ).

    Существование единого решения такой системы связано с существованием обратной матрицы. Матрица называется обратной матрицей Леонтьева или матричным мультипликатором модели (сокращенно мультипликатором Леонтьева).

    является матрицей коэффициентов полных затрат, так как экономическое объяснение ее элементов следующее: показывает потребность в валовой продукции -й отрасли для производства единицы конечной продукции -й отрасли.

    Произведение матрицы на вектор конечного продукта равняется .

    Решение задачи синтеза имеет вид:

    ,

    Возникает вопрос относительно условий, при которых существует матрица , для любого неотрицательного вектора , вектор также неотрицателен. В этом случае матрица называется продуктивной. Матрица , называется неотрицательной, если все ее элементы неотрицательны. Матрица любой ЭС по определению должна быть неотрицательной.

    Условия продуктивности неотрицательной матрицы:

    1) maxсобственное число матрицы , - собственный вектор.

    2) имеет неотрицательную обратную матрицу .

    3) Матричный ряд

    .

    (ряд Неймана) матрицы сходится (при этом ).

    4) последовательные главные миноры матрицы положительные.

    С 3) выплывает, что решение задачи синтеза можно получить итерационно, вычисляя по формуле:

    ,

    где приблизительное решение задачи , с номером - по предыдущему решению .

    Поиск собственных чисел матрицы

    где - собственный вектор.

    Пример: Дана матрица

    . Найти и

    И связаны уравнением

    Чтобы такая система уравнения имела ненулевое решение, ее определитель должен быть роавен 0.

    ;

    ;


    Тема:Модели межотраслевого баланса

    1. Балансовый метод.

    2. Принципиальная схема межсекторного баланса.

    3. Модель межсекторного баланса затрат труда.

    1.В основе создания балансовых моделей лежит балансовый метод, т.е. метод взаимного сопоставления имеющихся материальных, трудовых и финансовых ресурсов и потребностей в них. Если вместо понятия продукт ввести более общее понятие ресурс, то под балансовой моделью следует понимать систему уравнений, которые удовлетворяют требованиям соответствия наличия ресурса и его использования. Примеры балансового соответствия, как соответствие наличия рабочей силы и количества рабочих мест, платежеспособного спроса населения и предложения товаров и услуг и т.д. При этом соответствие понимается либо как равенство, либо менее жестко – как достаточность ресурсов для покрытия потребности и, следовательно, наличие некоторого резерва.

    Важнейшие виды балансовых моделей:

    · статические;

    · динамические;

    · частные материальные, трудовые и финансовые балансы;

    · межотраслевые балансы;

    Балансовый метод и создаваемые на его основе балансовые модели служат основным инструментом поддержания пропорций в народном хозяйстве. Для выявления диспропорций используется балансовые модели, в которых фактические ресурсы сопоставлялись бы с потребностью в них.

    Основу информационного обеспечения балансовых моделей в экономике составляет матрица коэффициентов затрат ресурсов по конкретным направлениям их использования. Например, в модели межотраслевого баланса такую роль играет технологическая матрица. По многим причинам исходные данные реальных хозяйственных объектов не могут быть использованы в балансовых моделях непосредственно, поэтому подготовка информации для ввода в модель является весьма серьезной проблемой. Так, при построении модели межотраслевого баланса используется специфическое понятие чистой (или технологической) отрасли, т.е. условной отрасли, объединяющей все производство данного продукта независимо от ведомственной (административной) подчиненности и форм собственности предприятий и фирм. Переход от хозяйственных отраслей к чистым отраслям требует специального преобразования реальных данных хозяйственных объектов, например, агрегирования отраслей, исключения внутриотраслевого оборота и др. В этих условиях понятия «межпродуктовый баланс» и «межотраслевой баланс» практически идентичны, отличие заключается лишь в единицах измерения элементов баланса.

    Балансовые модели относятся к тому типу экономико-математических моделей, которые называются матричными. В матричных моделях балансовый метод получает строгое математическое выражение.

    2.Первый квадрант МОБ - это шахматная таблица межотраслевых материальных связей. Показатели, помещенные на пересечениях строк и столбцов, представляют собой величины межотраслевых потоков продукции и в общем виде обозначаются x ij , где i и j – соответственно номера отраслей производящих и потребляющих. Так, величина x 32 понимается как стоимость средств производства, произведенных в отрасли с номером 3 и потребленных в качестве материальных затрат в отрасли с номером 2. Таким образом, первый квадрант по форме представляет собой квадратную матрицу порядка n, сумма всех элементов которой равняется годовому фонду возмещения затрат средств производства в материальной сфере.

    Во втором квадранте представлена конечная продукция всех отраслей материального производства, при этом под конечной понимается продукция, выходящая из сферы производства в область конечного использования (на потребление и накопление). В таблице этот раздел дан укрупнённо в виде одного столбца величин Y i ; в развернутой схеме баланса конечный продукт каждой отрасли показан дифференцированно по направлениям использования на личное потребление населения, общественное потребление, на накопление, возмещение потерь, экспорт и др. Итак, второй квадрант характеризует отраслевую материальную структуру национального дохода, а в развернутом виде - также распределение национального дохода на фонд накопления и фонд потребления, структуру потребления и накопление по отраслям производства и потребителям.

    Третий квадрант МОБ также характеризует национальный доход, но со стороны его стоимостного состава как сумму чистой продукции и амортизации; чистая продукция понимается при этом как сумма оплаты труда и чистого дохода отраслей. Сумму амортизации (c i) и чистой продукции (v j +m j) некоторой j-й отрасли будем называть условно чистой продукцией этой отрасли и обозначатьвдальнейшем Z j .

    Четвертый квадрант баланса находится на пересечении столбцов второго квадранта (конечной продукции) и строк третьего квадранта (условно- чистой продукции). Этим определяется содержание квадранта: он отражает конечное распределение и использование национального дохода. В результате перераспределения первоначально созданного национального дохода образуются конечные доходы населения, предприятий, государства. Данные четвертого квадранта важны для отражения в межотраслевой модели баланса доходов и расходов населения, источников финансирования капиталовложений, текущих затрат непроизводственной сферы, для анализа общей структуры конечных доходов по группам потребителей. общий итог четвертого квадранта, так же как второго и третьего, должен быть равен созданному за год национальному доходу.

    Следует особо отметить, что хотя валовая продукция отраслей не входит в рассмотренные выше четыре квадранта, она представлена на принципиальной схеме МОБ в двух местах в виде столбца, расположенного справа от второго квадранта, и в виде строки ниже третьего квадранта. Эти столбец и строка валовой продукции замыкают схему МОБ и играют важную роль как для проверки правильности заполнения квадрантов (т.е. проверки самого баланса), так и для разработки экономико-математической модели межотраслевого баланса.

    .

    .

    .

    .

    .

    3.Рассмотрим баланс пр-ва и распределения продукции. Обозначим затраты живого труда в производстве j-го продукта через L j , а объем производства этого продукта (валовой выпуск), как и раньше, через X j . Тогда прямые затраты труда на единицу j-го вида продукции (коэффициент прямой трудоемкости) можно задать следующей формулой:

    .

    Введем понятие полных затрат труда как суммы прямых затрат живого труда и затрат овеществленного труда, перенесенных на продукт через израсходованные средства производства. Если обозначить величину полных затрат труда на единицу продукции j-го вида через T j , то произведения вида a ij T i отражают затраты овеществленного труда, перенесенного на единицу j-го продукта через i-e средство производства; при этом предполагается, что коэффициенты прямых материальных затрат а ij выражены в натуральных единицах. Тогда полные трудовые затраты на единицу j-го вида продукции (коэффициент полной трудоемкости) будут равны

    .

    Введем в рассмотрение вектор-строку коэффициентов прямой трудоемкости t=(t 1 , t 2 ,…,t n) и вектор-строку коэффициентов полной трудоемкости T=(T 1 , T 2 ,…,T n).

    Тогда с использованием уже рассматриваемой выше матрицы коэффициентов прямых материальных затрат А (в натуральном выражении) систему уравнений можно переписать в матричном виде:

    Произведя очевидные матричные преобразования с использованием единичной матрицы Е

    Т -ТА = ТЕ -ТА = Т(Е -A) = t,

    получим следующее соотношение для вектора коэффициентов полной трудоемкости:

    Т = t(E -A) -1 .

    Т = tB=t(I-A) -1 .

    Обозначим через L величину совокупных затрат живого труда по всем видам продукции, которая с учетом формулы будет равна

    Используя соотношения, приходим к следующему равенству:


    Тема: Одноотраслевые динамические макроэкономические модели

    1. Дискретная и непрерывная одноотраслевая динамические модели.

    2. Открытая одноотраслевая динамическая модель.

    3. Использование одноотраслевых динамических моделей.

    1.Рассмотрим модель экономики, являющейся декомпозицией общей вербальной модели (рис. 8.1). Пусть ПС производства выпускает продукцию только одного вида (так называемая однопродуктовая или односекторная модель)

    X t =W t +C t +A t +I t.

    На рисунке показаны факторы, характеризующие производственный процесс:

    L – трудовые ресурсы,

    ОПФ – ОПФ или основной капитал,

    N – природные ресурсы,

    W – предметы труда, возвращенные в производство как часть валового продукта X.

    В блоке распределения P x разделяется на W и конечный продукт Y. В блоке распределения Py разделяется на непроизводственное потребление C и инвестиции I. Инвестиции разделяются на амортизационные отчисления A и чистые инвестиции I 1.

    В блоке V чистые инвестиции I 1 превращаются в прирост производственного капитала ΔK.

    В модели рассмотрим взаимосвязи: x, y, L, I, I`, C. Предположим, что валовые инвестиции I в том же году полностью используются на прирост ОПФ и амортизацию.

    В дискретном варианте эта связь имеет вид:

    I t =qּΔK t +A t , (8.1)

    где ΔK t = K t - K t -1 – прирост капитала в году t, q – коэффициент пропорциональности (параметр модели), At=μּK t – амортизационные отчисления,

    μ – коэффициент амортизации,

    K t – производств. капитал в году t.

    В непрерывном варианте аналог уравнения (8.1) есть:

    I(t)=q dK(t)/dt+μK(t).

    Отсюда выведем уравнение движения капитала ,

    Вернёмся к дискретному варианту:

    x t = W t + y t ;

    y t =I t +C t ;

    Таккак I t =qΔK t +A t , то

    x t =W t +y t =W t +I t +C t =W t +qΔK t +A t +C t ;

    Если предположить, что промежуточные затраты W являются пропорциональными выпуску валовой продукции XW t = ax t , то

    x t = ax t +qΔK t +μK t -C t ,

    илиΔK t =(1/q)[(1-a)x t -μK t -C t ] – дискретная однопродуктовая динамическая модель. Здесьa – коэффициент производственных затрат.

    В непрерывном варианте:

    K`(t)=(1/q)[(1-a)x(t)-μK(t)-C(t)] – непрерывная однопродуктовая динамическая модель.

    2.Предположим, что все валовые инвестиции I направлены на введение в действие новых ОПФ (основной производственный капитал не изнашивается), при этом прирост выпуска продукции

    Δx t = x t +1 -x t ,

    пропорциональный инвестициям

    ν – коэффициент использования инвестиций,

    a – коэффициент производственных затрат.

    xt=axt+νΔxt+Ct;

    В непрерывном варианте эта модель имеет вид

    x(t)=ax(t)+ν dx(t)/dt+C(t).

    3.Рассмотренные динамические модели односекторной экономики могут быть использованы для разных целей. С одной стороны на их основе можно создавать более сложные, но и более реальные многосекторные модели. С другой стороны их можно использовать для поиска путей наилучшего развития экономики. Это приводит к задачам оптимального управления.

    Из непрерывной однопродуктовой динамической модели

    K`(t)=(1/q)[(1-a)x(t)-μK(t)-C(t)],

    можно записать:

    x(t)=ax(t)+qK`(t)+μK(t)+C(t).

    Наилучшим путем развития экономики на отрезке времени , t 1

    ,

    где C(t) – непроизводственное потребление,

    D(t) – функция дисконтирования, которая изображает меру предпочтений потребления продукции в данный момент времени t, по сравнению с другим моментом времени.

    Выпуск продукции x(t) ограничивается производственными возможностями, которые определяются моментом времени t, капиталом K(t), трудовыми ресурсами L(t) и задаются функцией

    X = F(t, K(t), L(t)),

    которая является производственной функцией. Для всех t используется неравенство

    0≤x(t) ≤F(t, K(t), L(t)),

    Изменение капитала ограничено снизу

    K(t) ≥ K min , t 0 ≤ t ≤ t 1 .

    Кроме этого считается, что в начальный момент времени известен выпуск


    1 Вітлінський В.В. Моделювання економіки: Навч. посібник. – К.: КНЕУ, 2003.- 408с.

    2 Пономаренко О.І. Пономаренко В.О. Системні методи в економіці, менеджменті та бізнесі.: Навч.посібник. К.-Либідь,1995. - 240с.

    3 Клебанова Т.С., Забродський В.О., Полякова О.Ю., Петренко В.Л. Моделювання економіки: Навч. посібник. – Харків: Видавництво ХДЕУ, 2001.-140 с., рос. мовою.

    4 Бережна О.В., Бережной В.Г. Математичні методи моделювання економічних систем. Навч. посібник. – М.: Фінанси та статистика, 2001. – 368с., рос. мовою.

    5 Хачатрян С.Р. Прикладні методи математичного моделювання економічних систем. Науково-метод. Посібник / Московська академія економіки та права. – М.: “Екзамен”, 2002. - 192с., рос. мовою.

    6 Губин Н.М. и др. Экономико-математические методы и модели в планировании и управлении в отрасли связи: Учеб. пособие / Губин Н.М., Добронравов А.С., Дорохов Б.С. – М.: Радио и связь, 1993. –376с.

    7 Малыхин В.И. Математическое моделирование экономики: Учебно-практическое пособие. - М.: Издательство УРАО, 1998. – 160с.

    8 Экономико-математические методы и прикладные модели: Учеб. пособие для вузов/ В.В. Федосеев, А.Н. Гармаш, Д.М. Дайитбегов и др.; Под ред. В.В. Федосеева. – М.: ЮНИТИ, 1999. - 391с.

    9 Лопатников Л.И. Популярный экономико-математический словарь – М.: Знание, 1990. – 256с.

    10 Методичні вказівки до практичних занять з курсу "Економіко-математичні методи та системи в менеджменті" для студентів усіх форм навчання спеціальностей "Інформаційні системи в менеджменті", "Економічна кібернетика" / Упоряд. Н.Б. Івченко. – Харків: ХТУРЕ, 1999.- 40с.

    Метод моделирования является важнейшим универсальным методом исследования. Используя его, не следует забывать понятия аналогии. Модель может во многих отношениях отличаться от самого объекта исследования, но непременно должна иметь подобие, аналогию с этим объектом, прежде всего в отношении тех характеристик, которые подлежат изучению и прогнозированию.

    Модель какой-либо сложной системы тоже представляет собой систему (и нередко весьма сложную), имеющую физическое воплощение, либо записанную с помощью слов, цифр, математических обозначений, графических изображений и т. д.

    Таким образом, можно сказать, что модель - это физическая или знаковая система, имеющая объективное подобие с исследуемой системой в отношении функциональных, а часто и структурных характеристик, являющихся предметом исследования.

    Для построения знаковых моделей может использоваться, в принципе, любой язык - естественный, алгоритмический, графический, математический. Наибольшее значение и распространение имеют математические модели в силу универсальности, строгости, точности математического языка.

    Математическая модель представляет собой совокупность уравнений, неравенств, функционалов, логических условий и других соотношений, отражающих взаимосвязи и зависимости ocHOBHbDc характеристик моделируемой системы. Применитель-

    но к нашей теме будут рассматриваться преимущественно математические модели, хотя не исключены и другие, в частности алгоритмические.

    Однако важное преимущество модели состоит в том, что необъятная с точки зрения полного описания реальная социально-экономическая система заменяется пусть даже непростой, но вполне доступной для анализа и расчетов моделью, которая вместе с тем сохраняет в себе все существенное, что интересует исследователя. Это существенное выступает в модели даже более четко и рельефно, не будучи затемнено всевозможными незначащими частностями и деталями, посторонними и случайными факторами.

    C построением модели исследователь получает широкое поле для экспериментальной деятельности: он может изменять различные параметры, переменные величины, условия и ограничения и выяснять, к каким возможным результатам это приводит. B итоге многовариантных экспериментов с моделью (обычно на ЭВМ) вырабатывается ответ на кардинальный вопрос: при каких конкретных условиях следует ожидать в будущем наилучшего функционирования объекта с точки зрения поставленных целей? Аналогичное экспериментирование с самим реальным объектом чаще всего сильно затруднено или вообще невозможно; легко понять, например, что беспрерывное экспериментирование на «живых» предприятиях неприменимо как в социальном, так и чисто экономическом смысле. Модель же никаких ограничений в этом смысле не ставит. Формируемые для анализа, планирования, управления модели различаются по ряду признаков. Прежде всего, отметим различия по степени определенности используемой информации. Обратимся к теории принятия решений. Задачи принятия решений подразделяются на три группы:

    ■ задачи в условиях полной определенности, или детерминированные задачи;

    ■ задачи в условиях вероятностной определенности, или стохастические задачи;

    ■ задачи в условиях неопределенности.

    B детерминированных задачах принятие решения производится на основе полной, достоверной информации, относящейся к проблемной ситуации, ограничениям, критериям оптимальности. Точность исходных условий и данных приводит к однозначности принимаемого решения.

    Стохастические задачи принятия решений учитывают случайный характер некоторых (или всех) явлений, процессов, относящихся к изучаемой проблеме. Здесь действуют случайные факторы, законы распределения, вероятности которых нам известны. Скажем, ежегодный естественный прирост населения в республиках, областях страны есть в строго математическом смысле величина случайная, но его (прироста) вероятностные характеристики специалистам по демографии хорошо известны. Знание законов распределения случайных величин и определяет название соответствующих задач, как задач в условиях вероятностной определенности.

    Задачам в условиях неопределенности свойственна большая неполнота и недостоверность используемойинформации, влияние многообразных и очень слабо детерминированных факторов.

    Действующие здесь случайные события не характеризуются известными распределениями их вероятностей.

    Соответственно, в этой дифференциации задач принятия решений можно модели социально-экономических процессов разделить на два больших класса - модели детерминированные и стохастические. B первых из них все зависимости, отношения, исходная информация определены полно и однозначно. Каждому набору исходных параметров и переменных величин соответствует единственный вариант расчетного прогноза.

    B моделях стохастических каждому набору исходных величин соответствует лишь известное распределение вероятностей случайных событий прогнозируемого процесса.

    Решение по такой модели не теряет своей определенности, но определенности уже вероятностной, а не детерминированной.

    Сложнее обстоит дело с задачами в условиях неопределенности. Для них в сущности исключена возможность построения адекватных моделей и отыскание четких количественных решений. Такие задачи лучше исследовать не методами моделирования, а средствами логико-эвристического анализа, в частности - методами экспертных оценок.

    Модели разделяются также на статические и динамические. B статических моделях не учитывается время как фактор, изменяющий основные характеристики изучаемого объекта. Динамические модели включают фактор времени: время может фигурировать в них как самостоятельная переменная величина, влияющая на конечные результаты; параметры и переменные показатели также могут выступать как функции времени.

    B статической постановке задач нас вполне устраивает получение решений в виде оптимальных состояний, справедливых независимо от различных моментов времени.1 B динамических моделях приходится искать не оптимальное состояние (как бы фотоснимок), а оптимальное поведение во времени (как бы киноленту). Нетрудно понять, что динамическая задача носит более общий характер, статическая модель - ее частный случай.

    Следует разделять такие модели, как изыскательские и нормативные. Первые основаны на продолжении в будущем тенденций, взаимосвязей, сложившихся в прошлом и настоящем. Вторые определяют пути, ресурсы, сроки достижения в будущем возможных состояний объекта, отвечающих поставленным целям. Значит, изыскательские модели формализуют на базе статистики сложившиеся процедуры развития объекта и моделируют движение от прошлого к будущему; нормативные - устанавливают сначала целевые состояния, а затем строят соединяющие пути от будущего к настоящему.

    Модели классифицируются и по некоторым другим признакам.

    По характеру взаимосвязи между переменными модели подразделяются на линейные и нелинейные.

    По степени структуризации народнохозяйственных процессов модели делятся на однопродуктовые и многопродуктовые, на многоотраслевые и одноотраслевые, на одноэтапные и многоэтапные.

    По характеру требований, предъявляемых к результатам решения задач, модели экономических процессов могут быть либо балансовыми, либо оптимизационными.

    По глубине временного горизонта модели подразделяются на модели долгосрочного прогнозирования, перспективные, среднесрочные и текущие.

    По степени полноты охвата экономического объекта выделяются макро- и микромодели.

    Классификация экономико-математических моделей позволяет, с одной стороны, их упорядочить, систематизировать, а с другой - более детально разобраться в самой сущности моделирования экономических процессов.

    Моделирование экономических процессов - это часть области применения математических методов и моделей в анализе, планировании, организации и управлении народным хозяйством.

    Оно представляет собой сложную работу, состоящую из ряда последовательных и взаимосвязанных этапов на стадиях:

    а) постановки задачи,

    б) построения формализованной схемы,

    в) построения модели,

    г) исследования модели,

    д) проверки модели и оценки решения,

    е) внедрения решения и контроля его правильности.

    При разработке экономико-математических моделей необходимо соблюдать следующие основные требования:

    1) модель должна базироваться на строго научной экономической теории, раскрывающей категории и закономерности данной формации;

    2) модель должна отображать реальную структуру моделируемого процесса или объекта в соответствии с принципом структурного подобия (изоморфизма);

    3) в модели должно быть обеспечено единство масштаба и соблюдено соответствие размерностей экономических величин;

    4) в модели должно проводиться принципиальное различие между управляемыми, полууправляемыми и неуправляемыми параметрами;

    5) модель должна удовлетворять условиям, определяющим степень ее соответствия объекту и границы применяемости.

    B целом моделирование является неотъемлемой составной частью общего процесса научного познания. K первым этапам познания нового объекта относится построение приближенной и упрощенной его модели.

    По мере углубления знаний об объекте создаются все более детализированные и более точные модели. При этом очень важно, что в процессе познания реализуется не только принцип «больше узнал - создал новую модель», но и обратный - «создал новую модель - больше узнал».

    Построение и анализ моделей не просто оформляют новое, добытое иными путями знание об объекте, но и сами становятся источником^эасширения знаний о нем. B конечном счете этот процесс приводит к разработке последовательной и законченной теории изучаемого объекта или явления, а отсюда - к всесторонним выводам и рекомендациям практического характера.

    Методы и модели (экономисты)

    Классификация методов и моделей в экономике ====================================================================

    Лекция. Классификация методов и моделей в экономике

    Предлагаемый к изучению предмет является частью прикладной математики. Структуру изучаемой и смежных областей знаний можно представить в виде следующей схемы.

    Общая теория систем сформировалась в последние десятилетия двадцатого века как дисциплина, изучающая общие свойства сложных систем различной природы.

    Системный анализ – методология анализа сложных систем различной природы (экономических, технических, биологических, социальных). Он предполагает структуризацию системы, формулировку целей и анализ полученных подсистем с помощью математических методов.

    Система – совокупность взаимосвязанных элементов. Она описывается некоторыми параметрами, среди которых выделяют исходные (), управляемые (A , B , C ) и выходные (). Задача анализа системы ставится как задача принятия решений, то есть задача выбора таких управляемых параметров, которые обеспечивают наилучшие показатели деятельности системы. Цели функционирования системы могут быть разные и обычно формулируются постановщиком задачи, лицом принимающим решения.

    Исследование операций занимается изучением количественных методов анализа результатов целенаправленной человеческой деятельности с помощью экономико-математических методов.

    Системы, не являющиеся результатом человеческой деятельности, изучаются в рамках общей теории систем другими специализированными дисциплинами. Примером такой дисциплины является математическая физика.

    Математическая физика – наука, которая изучает поведение сплошных сред. К математической физике, в частности, относится механика жидкости, газа и твердых тел.

    Задачи принятия решений

    Исследование операций включает в себя целый ряд научных дисциплин, отличающихся целями и методами принимаемых решений:

      Математическое программирование изучает такие задачи принятия решений, в которых наилучшим решением является такое, на котором достигается наибольшее (или наименьшее) значение некоторого показателя эффективности:

    где

    Задача (1–2) относится к классу экстремальных задач. Если область допустимых решений D совпадает с пространством вещественных чисел R , то есть отсутствуют ограничения (2),то данная экстремальная задача является классической задачей оптимизации.

      Линейное программирование. Задача линейного программирования – это задача математического программирования (1–2), в которой целевая функция и функции ограничений линейные. Для таких задач разработаны точные методы решений.

      Транспортные задачи – задачи линейного программирования специального вида, имеющие более эффективные методы решений.

      Задачи о назначениях – задачи о распределении работы между исполнителями с целью достижения максимальной эффективности.

      Задачи нелинейного программирования – задачи математического программирования, в которых хотя бы одна из функций нелинейна. В общем случае эти задачи не имеют точных аналитических методов решений. Основные методы их решения – приближенные.

      Задачи выпуклого программирования – задачи нелинейного программирования, в которых ищется минимум выпуклой () функции цели, а область допустимых значений выпукла (). Это гарантирует одноэкстремальность задачи и позволяет сформулировать признак оптимальности решения.

      Задачи квадратичного программирования – задачи выпуклого программирования, имеющие квадратичную целевую функцию с линейными ограничениями.

      Задачи дискретного программирования – задачи математического программирования, имеющие дискретную область допустимых решений (в частности, конечное или счетное множество решений).

      Задачи динамического программирования – задачи, в которых применяются пошаговые методы решения.

      Задачи стохастического программирования – задачи, в которых используются функции случайных величин.

      Векторная (многокритериальная) оптимизация изучает задачи исследования операций, в которых требуется обеспечить наибольшее (наименьшее) значение нескольким показателям эффективности в одной и той же области допустимых решений.

      Теория игр рассматривает задачи принятия решений в конфликтных ситуациях.

      Теория управления запасами изучает задачи определения объемов поставки и сроков хранения продукции.

      Сетевое планирование и управление предлагает методы планирования работ, связанных сетевыми графиками.

      Теория расписаний или теория календарного планирования рассматривает методы планирования работ во времени.

      Имитационное моделирование – моделирование систем с помощью электронной вычислительной техники.

    Математическое моделирование

    Моделирование – замена одного объекта другим с целью изучения их общих свойств.

    По средствам моделирования методы моделирования можно разбить на две группы: методы материального моделирования и методы идеального моделирования.

    Материальным моделирование называется в том случае, когда копия объекта – модель имеет материальный характер.

    В материальном моделировании можно выделить три группы методов: пространственное, физическое и аналоговое

    Пространственное моделирование изучает геометрические свойства объекта (макеты, карты, глобус).

    Физическое моделирование служит для воспроизведения и изучения динамических свойств объектов (летательных аппаратов, технических сооружений).

    В аналоговом моделировании изучаемый объект заменяется объектом другой физической природы, поведение которого описывается теми же математическими соотношениями, что и изучаемого объекта. Например, механические колебания изучают с помощью электрической системы, более простой и дешевой, чем её механический аналог. Так поступают при изучении колебаний мостов.

    Идеальное моделирование основывается не на материальной аналогии модели и изучаемого объекта, а на идеальной, мыслимой связи между ними. Материальной копии не создается.

    Методы идеального моделирования можно разбить на две группы: формализованное (знаковое) и неформализованное (интуитивное) моделирование.

    В формализованном моделировании реальный объект заменяется системой знаков (схемы, графики, чертежи, формулы).

    Важнейшим видом знакового моделирования является математическое моделирование . В этом случае копия моделируемого объекта (модель) представляет собой некоторые математические соотношения (уравнения, зависимости) между параметрами системы. Задавая значения одних параметров и находя из этих соотношений другие, интересующие исследователя параметры, можно тем самым проводить эксперименты с математической моделью.

    Математическое моделирование с получением количественных результатов при помощи ЭВМ получило название вычислительного эксперимента . Возможности вычислительного эксперимента часто превышают возможности материального, натурного моделирования. В некоторых случаях удается провести вычислительный эксперимент тогда, когда натурный в принципе невозможен (ядерная физика, астрофизические исследования, поведение экономических систем).

    Интуитивное моделирование – основано на построении мысленной копии объекта. Каждая наука стремится заменить интуитивное представление об изучаемых объектах формализованным, знаковым представлением. На этом пути перспективным является сочетание использования экспертных знаний специалистов и математических методов принятия решений.

    Модели имитации и оптимизации

    Модели имитации и оптимизации экономических процессов могут строиться как на детерминированной, так и вероятностной основе. Они представляют особую ценность для экономического анализа, так как по­зволяют получить наилучшие по принятому критерию экономические параметры и тем самым объективно оценить существующие в данной ситуации резервы. Имитационная модель

    Имитационная модель - численная экономико-математическая мо­дель изучаемой системы, предназначенная для использования в процес­се компьютерной имитации реально протекающего процесса. По суще­ству - это программа для компьютера, а производимые по ней расчеты при различных задаваемых значениях экзогенных (вводимых) перемен­ных позволяют получить целый набор вариантов функционирования системы. Подробнее имитационная модель будет рассмотрена в пара­графе 2.4.

    Принятие оптимальных решений может осуществляться на ряде эко­номико-математических модели, часть которых относится к исследова­нию операций:

    Линейное программирование

    Линейное программирование применяется для нахождения опти­мальных решений многих экономических задач. Оно основано на реше­нии системы уравнений и неравенств при функциональной зависимости рассматриваемых процессов. Сформулированная функция цели позво­ляет выбрать из большого числа альтернативных вариантов лучший, оптимальный.

    Термин «программирование» связан с тем, что неизвестные перемен­ные, которые отыскиваются в процессе решения, обычно определяют лучший вариант плана деятельности некоторого экономического объек­та. Следует однако иметь в виду, что предпосылка линейности, лежащая в основе этого метода, - существенное огрубление реальной ситуации, которая, как правило, носит более сложный нелинейный характер.

    Нелинейное программирование

    Предлагает методы решения таких задач, в которых результаты изме­няются непропорционально масштабу производства. В отличие от ли­нейного программирования здесь заранее не оговаривается форма ни неравенств, ни целевой функции. Поэтому могут быть различные вари­анты их сочетаний: целевая функция нелинейна, а ограничения линей­ны; целевая функция линейна, а ограничения нелинейны; и целевая функ­ция, и ограничения нелинейны.

    В связи со сложностями решения задач нелинейного программиро­вания их упрощают тем, что сводят к линейным: условно принимают, что на том или ином участке целевая функция возрастает или убывает пропорционально изменению независимых неременных (метод кусоч­но-линейных приближений).

    Дискретное программирование

    Этот раздел математического программирования накладывает на ис­комые переменные дополнительное ограничение их целочисленное™. Такое ограничение отвечает требованию очень большого числа эконо­мических задач. Оно во многом связано с физической неделимостью факторов и объектов расчета. Например, судостроительное предприя­тие не может построить 2,38 готового судна. Кроме того, требование целочисленности может относиться и к определенным периодам деятель­ности предприятия. Дискретными являются решения таких известных задач исследования операций, как задача о коммивояжере, задача о на­значениях, задача теории расписаний, задача замены оборудования и др.

    Самым простым способом решения задач дискретного программиро­вания - это решение их одним из способов линейного программирова­ния, например, симплес-методом, проверкой полученного результата на целочисленность и последующим округлением, что может, естественно, сделать полученные итоги отличными от оптимального уровня.

    Динамическое программирование

    Раздел математического программирования, основанный на пошаго­вом решении задачи, вычислении последствий каждого шага и принятии оптимальной стратегии для последующих шагов. Таким образом, динамическое программирование - это многошаговый процесс. Напри­мер, полученные экономические параметры данного периода являются основанием для построений последующего.

    Такой многошаговый процесс не обязательно должен быть связан со временем. Он может быть и статическим, например, задача обновления оборудования на предприятии.

    Поэтапность схемы динамического программирования накладывает на критерий оптимальности требование аддитивности, т. е. общее опти­мальное решение является суммой оптимальных решений каждого шага. Область применения метода динамического программирования - это планирование деятельности экономического объекта, распределе­ние ресурсов во времени и на различные цели, ремонт и замена оборудо­вания.

    Стохастическое программирование

    Включает в себя ряд оптимизационных задач вероятностного харак­тера. И, следовательно, либо параметры ограничений задачи, либо пара­метры целевой функции, либо и то и другое являются случайными ве­личинами.

    Наиболее успешно решаются двухэтапные задачи стохастического программирования. Смысл такого подхода можно показать на примере из области маркетинга: планирование объема производства продукции при неопределенном спросе на нее.

    На первом этапе устанавливается предварительный оптимальный план. Задача решается как детерминированная. По ее результатам фор­мируется производственная мощность производителя. На втором этапе план корректируется в соответствии с фактическим спросом на продук­цию.

    Естественно, чем точнее были ранее учтены статистические харак­теристики будущего спроса, тем меньше будет необходимость в этих корректировках. Если продолжить корректировки и в дальнейшем, то задача превращается в многоэтапную, как это имеет место при динами­ческом программировании.

    Сетевые методы планирования и управления

    Основаны на применении сетевых графиков, которые представляют собой цепи работ (операций) и событий, отражают их технологическую последовательность на пути к достижению цели. Компьютерная обра­ботка позволяет найти критический путь и этим выявить последова­тельность работ, которые могут задержать выполнение всех работ к на меченной дате. Сетевой график может быть ориентирован не на крите­рий времени, а и на другие параметры, например, на стоимость произво­димых работ.

    Данные сетевого графика могут быть как детерминированными, так и вероятностными. В зависимости от числа не связанных комплексов работ они могут быть односетевыми и многосетевыми.

    Программно-целевые методы планирования и управления

    В этом методе цели плана увязываются с имеющимися ресурсами с помощью программ. Он применяется чаще всего для долгосрочного планирования. Основная цель подразделяется на подцели и уже для них выявляются ресурсы, необходимые для согласованной реализации.

    Оценка и выбор возможных вариантов программ по различным эко­номическим критериям.

    Теория управления запасами

    Теория управления запасами - составная часть исследования опера­ций. Позволяет оптимизировать объем ресурсов, находящихся на хра­нении и предназначенных для удовлетворения спроса на них. Запасами могут быть: готовая продукция; полуфабрикаты, сырье, ресурсы (мате­риальные и трудовые), денежные средства. В качестве целевой здесь выступает функция минимизации суммарных затрат на содержание за­пасов, на складские операции, на потери в связи с порчей и моральным старением, потери в связи с возможным дефицитом и пр.

    Управляемыми переменными здесь являются: объем запасов, частота поставок, сроки пополнения запасов, степень готовности хранимых объектов и др.

    Одним из вариантов задачи управления запасами является задача о нахождении оптимальной партии поставок.

    Теория массового обслуживания

    Теория массового обслуживания также является разделом исследо­вания операций. Широко используется в экономике и других отраслях. Характерная черта: требования на обслуживание случайно поступают на «канал обслуживания» - место удовлетворения запроса. В зависи­мости от потенциала обслуживания, его длительности и других факто­ров образуется очередь требований.

    На основе изучения статистических закономерностей поступления требований вырабатываются решения, при которых затраты времени на ожидание в очереди, с одной стороны, и простой каналов обслуживания - с другой стороны, были бы наименьшими.

    Теория игр

    Использует модели таких ситуаций, при которых интересы участни­ков либо противоположны - «антагонистические игры», либо не совпа­дают, хотя и непротивоположны - «игры с непротивоположными инте­ресами». Эти модели хорошо описывают процесс конкуренции. Если описываются отношения двух конкурентов, то игра называется парной; когда в ней участвует n лиц, она называется «игра n лиц». Если игроки образуют коалиции, игра называется коалиционной.

    Каждый из участников игры выбирает стратегию действий, которая обеспечивает наибольший выигрыш или наименьший проигрыш. Реше­ния принимаются в условиях неопределенности, так как действия парт­нера неизвестны. Решения отражаются в таблице (платежной матрице), где может быть обнаружена «седловая точка», в которой достигается равновесие, приемлемое для партнеров.

    Приемы теории игр могут применяться при решении многих эконо­мических задач, например, выбора оптимальных решений в области по­вышения качества продукции, при определении запасов.

    1.4. КОМПЛЕКСНЫЙ И ЛОКАЛЬНЫЙ ЭКОНОМИЧЕСКИЙ АНАЛИЗ

    Системный подход в экономическом анализе

    Системный анализ любого объекта проводится в три этапа:

      Постановка задачи - определение объекта исследования, поста­новка целей, задание критериев для изучения объектов и управле­ния ими.

      Выделение изучаемой системы и ее структуризация.

      Составление математической модели изучаемой системы.

    Системный (комплексный) подход в экономическом анализе пред­полагает изучение объектов анализа как сложных систем, характерис­тика которых может быть дана некоторым набором экономических по­казателей, взаимосвязанных друге другом определенным образом.

    При системном подходе эти взаимосвязи оцениваются в динамике и соподчинении, что позволяет выделить соподчиненность показателей и их ведущие группы. Системный подход представляет собой весьма эффективное средство решения ряда сложных проблем в экономике и других областях. При этом любой объект рассматривается не как единое целое, а как система взаимосвязанных элементов, их свойств, качеств.

    Так, в экономике отдельные стороны, характеризующие данный эко­номический процесс, рассматриваются как элементы системы, связь которых изучается. Это позволяет, в частности, дать оценку потребно­стей и возможностей улучшения постановки дела.

    В современной рыночной экономике производственно-технические, конъюнктурно-коммерческие и прочие факторы находятся в сложной взаимной зависимости. Так, например, план выпуска продукции пред­приятием должен учитывать спрос покупателей, потребности в сырье, необходимые оборотные фонды, основные фонды, вероятность возник­новения технических неполадок и других ограничений.

    Системный подход к экономике предприятия предполагает также и учет нередко возникающих в практической деятельности противоре­чий целей отдельных структурных подразделений предприятия.

    Системный подход направлен на совершенствование самих процедур выработки управляющих решений. Степень успешности данного подхо­да может быть измерена уровнем рентабельности, получаемой после его реализации.

    Создается, таким образом, модель системы, которая помогает лучше ее понять, выделить главное. Следует также отметить, что в модели долж­ны приниматься во внимание такие характеристики источников дан­ных, которые определяют качество поставляемой информации. Следу­ет также учитывать цели и квалификацию персонала, ответственного за сбор информации.

    С позиций системного анализа производится комплексный эконо­мический анализ.

    Имитационная модель экономики предприятия

    Комплексный экономический анализ может быть реализован в виде имитационной модели экономики предприятия.

    Имитационное моде­лирование - это модельное описание действительного хода процесса с помощью определенной системы понятий и конечного набора показа­телей.

    Основным достоинством имитационной модели является ее под­ражательность, способность воспроизводить процесс. Здесь модель яв­ления не выбирается из какого-либо определенного класса, а должна удовлетворять требованию максимального приближения к исследуе­мому процессу, точности его воспроизведения. Метод имитационного моделирования дает возможность широкого использования математи­ческого аппарата и вычислительной техники для исследования хода экономических процессов и проверки предлагаемых усовершенствований. Имитационное моделирование осуществляется в два этапа: построе­ние дескриптивной модели и построение экономико-математической модели.

    Дескриптивная модель предназначена для описания экономики пред­приятия. Для ее разработки исследуется фактическое протекание хо­зяйственного процесса на предприятии, прорабатываются различные документы: методические положения, материалы по организации и уп­равлению предприятием.

    Затем производят формирование системы показателей, достаточно полной и пригодной для удовлетворительного описания рассматривае­мого процесса. Далее строится схема взаимосвязи отобранных показа­телей, которые служат основой построения экономико-математической модели. Пример дескриптивной модели экономики промышленного предприятия приведен на рис. 2.6.

    Построение экономико-математической модели содержит следую­щие этапы:

      разработка первоначальной (исходной) модели, т. е. формирова­ние системы уравнений связи экономических параметров, пред­ставленных в дескриптивной модели;

      исследование свойств модели методами математического анали­за; реализация модели в виде машинной программы; проведение серии расчетов с анализом результатов; разработка суждений о пригодности выбранной системы показателей и уравнений их взаимосвязи и необходимости внесения изменений в первона­чальную модель;

      использование принятой модели для проведения многовариант­ных расчетов с целью нахождения экономических параметров тра­ектории оптимального функционирования предприятия.

    ====================================================================

    СКлассификация методов и моделей в экономике

    Modulus - образец) - воспроизведение экономических объектов и процессов в малых, экспериментальных формах, в искусственно созданных условиях (натурное моделирование). В экономике чаще используется математическое моделирование посредством описания экономических процессов математическими зависимостями. Моделирование служит предпосылкой и средством анализа экономики и протекающих в ней явлений и обоснования принимаемых решений, прогнозирования, планирования, управления экономическими процессами и объектами. Модель экономического объекта обычно поддерживается реальными статистическими, эмпирическими данными, а результаты расчетов, выполненных в рамках построенной модели, позволяют строить прогнозы, проводить объективные оценки.

    Экономика и право: словарь-справочник. - М.: Вуз и школа . Л. П. Кураков, В. Л. Кураков, А. Л. Кураков . 2004 .

    Смотреть что такое "ЭКОНОМИЧЕСКОЕ МОДЕЛИРОВАНИЕ" в других словарях:

      Эколого-экономическое моделирование - описание экономических и экологических процессов в их взаимосвязи в виде эколого экономических моделей, основной исследовательский метод новой экономической дисциплины, которую можно было бы назвать экологической… …

      эколого-экономическое моделирование - Описание экономических и экологических процессов в их взаимосвязи в виде эколого экономических моделей, основной исследовательский метод новой экономической дисциплины, которую можно было бы назвать экологической экономикой, но чаще (особенно в… …

      Моделирование экономических объектов и процессов в искусственно созданных условиях или математическое моделирование с целью прогнозирования, планирования, анализа, управления экономическими процессами и объектами. Словарь бизнес терминов.… … Словарь бизнес-терминов

      - (см. ЭКОНОМИЧЕСКОЕ МОДЕЛИРОВАНИЕ) … Энциклопедический словарь экономики и права

      Экономическое (франц. modelle, от лат. modulus мера, образец) воспроизведение экономических объектов и процессов в ограниченных, малых, экспериментальных формах, в искусственно созданных условиях (натурное моделирование). В экономике чаще… … Экономический словарь

      МОДЕЛИРОВАНИЕ В СОЦИОЛОГИИ - метод исследования соц. явлений и процессов на их моделях, т. е. опосредствованное изучение соц. ооъектов, в процессе к рого они воспроизводятся в вспомогательной системе (модели), замещающей в познавательном процессе оригинал и позволяющей… … Российская социологическая энциклопедия

      моделирование экономическое - (от франц. modelle, от лат. modulus мера, образец) воспроизведение экономических объектов и процессов в ограниченных, малых, экспериментальных формах, в искусственно созданных условиях (натурное моделирование). В экономике чаще используется… … Словарь экономических терминов

      - (финансово экономическое оценивание), ФЭО форма оценки воздействия, преимущественно используемая для оценки изменений чистых денежных потоков, возникающих в результате реализации мер государственного регулирования, принятия нормативных… … Википедия

      Экономико-математическое моделирование - описание экономических процессов и явлений в виде экономико математических моделей. (Иногда тем же термином обозначают также реализацию экономико математической модели на ЭВМ, т.е.… … Экономико-математический словарь

      экономико-математическое моделирование - Описание экономических процессов и явлений в виде экономико математических моделей. (Иногда тем же термином обозначают также реализацию экономико математической модели на ЭВМ, т.е. «искусственный эксперимент» или машинную имитацию, машинное… … Справочник технического переводчика

    Книги

    • Организационно-экономическое моделирование. Теория принятия решений. Учебник , Орлов Александр Иванович. Представлены теория и практика разработки управленческих решений на основе организационно-экономического моделирования. Рассмотрены основы теории принятия решений, технология и процедуры…
    • Организационно-экономическое моделирование. Учебник. В 3-х частях. Часть 2: Экспертные оценки. Гриф УМО вузов России , Орлов Александр Иванович. Систематизированы ключевые процедуры теории и практики экспертных оценок, в том числе связанные с типовыми стадиями экспертного опроса, методами подбора экспертов, разработкой регламентов…