Мировые тенденции в развитии телекоммуникационной отрасли. Реферат: Мировые тенденции в развитии телекоммуникационной отрасли

Страница 32 из 32 История развития телекоммуникационных систем и компьютерных сетей

История развития телекоммуникационных систем и компьютерных сетей

Вычислительная и телекоммуникационная технологии

Компьютерная сеть (Вычислительная сеть) - это совокупность компьютеров, соединенных линиями связи. Линии связи образованы кабелями или проводами, p-каналами и оптическими коммуникационными устройствами. Все сетевое оборудование работает под управлением системного и прикладного программного обеспечения.

Сеть - network - взаимодействующая совокупность объектов, образуемых устройствами передачи и обработки данных.

Компьютерные сети, отнюдь не являются единственным видом сетей, созданным человеческой цивилизацией. Даже водопроводы Древнего Рима можно рассматривать как один из наиболее древних примеров сетей, покрывающих большие территории и обслуживающих многочисленных клиентов. Другой, менее экзотический пример - электрические сети. В них легко можно найти аналоги компонентов любой территориальной компьютерной сети: источникам информационных ресурсов соответствуют электростанции, магистралям - высоковольтные линии электропередач, сетям доступа - трансформаторные подстанции, клиентским терминалам - осветительные и бытовые электроприборы.

С одной стороны, сети представляют собой частный случай распределенных вычислительных систем, в которых группа компьютеров согласованно выполняет набор взаимосвязанных задач, обмениваясь данными в автоматическом режиме. С другой стороны, компьютерные сети могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах

Рассмотрим основные этапы развития телекоммуникационных сетей.

В середине XX в. основными системами коммуникации (лат. communico - делаю общим) между людьми, занятыми в экономике, не считая привычные почтовые письма, были телеграф, телефон и радиосвязь . Телевидение находилось на этапе своего становления. Посредством телеграфных, телефонных сетей и радиосетей осуществлялась передача информационных потоков, но обработка переданной информации целиком возлагалась на человека.

Настоящим прорывом в науке, технике, экономике и социальной жизни стало изобретение компьютера. На первых этапах своего развития (до 70-х гг. XX в.) компьютерная техника использовалась исключительно для обработки информации, а сбор и передача информации осуществлялись с помощью телекоммуникационных систем и сетей, основой которых являлись вышеупомянутые телеграфные, телефонные сети и радиосети.

После создания компьютерных сетей, представляющих собой совокупность компьютеров и объединяющих их каналов связи, сбор, передача и обработка информации стали осуществляться с помощью компьютерной техники. Два эволюционных пути - развитие телекоммуникаций и вычислительной техники - привели их к закономерному соединению .

Телекоммуникационные системы и сети являются по сравнению с компьютерными сетями «старожилами», и первыми из них были телеграфные и телефонные сети.

Телеграф (греч. tele - далеко и grapho - пишу) был изобретен в середине XIX в. и предназначался для передачи сообщений на расстояние при помощи электрических сигналов, символов и букв. Самый заметный вклад в развитие телеграфа внесли такие ученые, как К. Штейнгейль, В. Сименс, С. Морзе, Ж. Бодо и др.

В 1838 г. в Мюнхене немецкий ученый К. Штейнгейль построил первую телеграфную линию длиною в 5000 м.

В 1843 г. шотландский физик А. Бэйн продемонстрировал и запатентовал собственную конструкцию электрического телеграфа, которая позволяла передавать изображения по проводам. Аппарат А. Бэйна считается первой примитивной факс-машиной.

В 1866 г. был проложен трансатлантический телеграфный кабель по дну океана между Америкой и Европой, а в 1870 г. фирма «Сименс» протянула индоевропейскую телеграфную линию длиною в 11 тыс. км.

В конце XIX в. в Европе было протянуто 2840 тыс. км подземного кабеля телеграфных линий, в США - свыше 4 млн км, в России протяженность телеграфных линий составляла 300 тыс. км. Общая протяженность телеграфных линий в мире в начале XX в. составила около 8 млн км.

К середине XX в. в Европе были созданы телеграфные сети, получившие название Telex (TELEgraph + EXchange). Несколько позже в США также была создана национальная сеть абонентского телеграфа, подобная Telex и получившая наименование TWX (Telegraph Wide area eXchapge).

Сети международного абонентского телеграфа* постоянно расширялись, и к 1970 г. сеть Telex объединяла абонентов более чем из 100 стран мира.

В наши дни возможность обмена сообщениями по сети Telex сохранена во многом благодаря электронной почте сети Интернет. На территории бывшего СССР телеграфная связь существует и поныне. Телеграфные сообщения передаются и принимаются при помощи специальных устройств - телеграфных модемов, сопряженных в узлах связи с персональными компьютерами операторов. Телеграфная связь используется в основном для передачи телеграфной корреспонденции, поступающей от государственных предприятий, учреждений и частных лиц, ведения документальных переговоров, передачи статистических данных и различной цифровой информации между предприятиями.

Тем не менее в некоторых странах национальные операторы сочли телеграф устаревшим видом связи и свернули все операции по отправке и доставке телеграмм. В Нидерландах телеграфная связь прекратила работу в 2004 г. В январе 2006 г. старейший американский национальный оператор Western Union объявил о полном прекращении обслуживания населения по отправке и доставке телеграфных сообщений. В то же время в Канаде, Бельгии, Германии, Швеции, Японии некоторые компании все еще поддерживают сервис по отправке и доставке традиционных телеграфных сообщений.

Исторически телефонные сети появились несколько позже телеграфных.

Первые слова были сказаны по телефону (греч. tele - далеко и phone - голос) 10 марта 1876 г. и принадлежали они шотландскому изобретателю, преподавателю школы глухонемых Александру Грэму Беллу: «Мистер Ватсон, зайдите, я хочу Вас видеть». Дальность действия этой телефонной линии внутри здания составляла 12 м. Следует отметить, что вначале телефон был недооценен специалистами телеграфной связи, воспринявшими телефон за «никому ненужную лабораторную игрушку*. Данная экспертная оценка являлась примером крупнейшей и грубейшей ошибки за всю историю телекоммуникационного бизнеса. Через несколько лет телефон и телефонные сети стали развиваться стремительными темпами.

В 1878 г. компанией Bell Telephone, организованной А.Г. Беллом в Нью-Хевене (штат Коннектикут, США), была построена первая в мире телефонная станция и выпущен первый телефонный справочник объемом в 21 страницу, а уже в следующем году эта же компания начала строительство телефонной сети объемом на 56 тыс. абонентов.

Первая в России междугородная телефонная сеть заработала в 1880 г. на Царскосельской железной дороге. Оценив преимущества нового вида связи, российские предприниматели стали обращаться с ходатайствами к правительству о выдаче разрешения на строительство телефонных линий.

Первые абоненты телефонных станций соединялись вручную и вызвать абонента можно было, назвав требуемый номер телефонистке. В 10-х гг. XX в. автоматические телефонные станции (АТС) постепенно стали вытеснять телефонисток, соединявших абонентов вручную. Появились телефопные аппараты с дисковым набором номеров. Первая АТС в СССР появилась только в 1924 г. в Кремле и обслуживала 200 абонентов. Городская московская АТС на 15 тыс. абонентов начала работать в 1930 г. К началу Второй мировой войны в СССР насчитывалось более 1 млн абонентов.

После Второй мировой войны развитие телефонных сетей получило новый импульс. В 1951 г. в США впервые АТС стали использоваться не только для соединения в пределах одного города, но на междугородних линиях. В СССР такая АТС впервые была введена в эксплуатацию в 1958 г. между Москвой и Ленинградом.

В 1956 г., спустя 90 лет после прокладки первой телеграфной кабельной линии через Атлантику, закончилась прокладка первой трансатлантической телефонной линии связи, соединившей Великобританию и США (через Канаду).

В 50-60-е гг. XX в. разрабатывались основные методы цифровой передачи сигнала, в том числе голоса, велись работы по созданию радио- и видеотелефонии, мобильной телефонной связи.

В 1978 г. в Бахрейне начала эксплуатацию коммерческая система сотовой телефонной связи, которая считается первой реальной системой сотовой связи в мире.

80-90-е гг. XX в. характеризовались интенсивным внедрением цифровых методов передачи голоса и соответствующих телефонных сетей, использованием спутниковой связи, мобильной сотовой связи, а также широчайшим использованием компьютеров для обеспечения функционирования телефонных сетей.

Работы в области радиосвязи начались с тех пор, когда немецкий ученый Г. Герц в 1888 г. открыл способ создания и обнаружения электромагнитных радиоволн. 25 апреля 1895 г.

русский ученый А.С. Попов сделал доклад, посвященный методу использования излученных электромагнитных волн для беспроводной передачи электрических сигналов, содержащих информацию. В марте 1896 г. ученый провел эксперимент, он передал радиограмму с двумя словами «Генрих Герц» на 250 м. Через несколько лет в Кронштадте, не подавая заявку на патент, он наладил выпуск принимающей и передающей аппаратуры. Предприимчивый итальянец Г. Маркони заинтересовался новым изобретением. В июле 1898 г. он подал патент в Англии, предъявив подобное устройство, чуть усложнив схемы А.С. Попова. Приоритет открытия радио остался в истории человечества за Г. Маркони.

В 1898 г. Г. Маркони организовал радиосвязь между Францией и Англией, а в 1901 г. ему удалось передать сигналы со станции в Англии на станцию в Ньюфаунленде, США. В начале своего становления радиосвязь использовалась для передачи телеграфных сообщений, не учитывая возможностей радио по передаче звука.

В 1915 г. был осуществлен исторический эксперимент, когда по радио успешно были переданы речевые сигналы из Арлингтона (штат Вирджиния) в Париж. Следует отметить, что Г. Маркони предпочел, чтобы краеугольным камнем его беспроволочного телеграфа оставалась азбука Морзе, так как для беспроволочной передачи речи он не видел никакого полезного применения.

В 1920 г. американский радиолюбитель Конрад сконструировал радиостанцию для работы в режиме «телефон» и впервые в мире начал вести вещательные передачи.

В первой половине XX в, после разработки учеными и инженерами более совершенной усилительной аппаратуры, антенных устройств, а также методов передачи и приема радиосигналов радиосвязь стала стремительно развиваться.

Вторая половина XX в. характеризовалась совершенствованием радиоаппаратуры, разработкой цифровых методов радиосвязи, а также использованием спутниковых систем радиосвязи.

Что касается телевидения («радио с изображением»), то идеи создания электрической системы для передачи подвижного изображения на расстояние высказывались еще в 70-е гг.

XIX в. Основывались эти идеи на чисто теоретических выводах, так как возможности физических экспериментов в ту пору были ничтожны. Однако в середине 20-х гг. XX в. промышленно-техническая база развилась настолько, что впервые появилась возможность практической реализации теоретических принципов телевидения.

Идеям и экспериментам по передаче на расстояние подвижного изображения предшествовали идеи и эксперименты по передаче изображения неподвижного.

В 20-е гг. XX в. развитие электронного телевидения проходило в борьбе с противодействием сторонников механического телевидения (с использованием вращающихся механизмов для получения развертки на экране), пессимистически оценивавших перспективы электронных систем из-за больших технических трудностей, связанных с их созданием. Но идея электронного телевидения как самая прогрессивная оказалась наиболее жизненной.

Отцом современного электронного телевидения стал В.К. Зворыкин, эмигрировавший после гражданской войны в США. В 1931 г. он изобрел электронно-лучевую трубку, которую назвал иконоскопом. Изобретение иконоскопа явилось поворотным пунктом в истории телевидения, определившим направление его дальнейшего развития; он обеспечивал телевизионные передачи с большим числом строк.

Первые передачи телевизионных изображений по радиоканалу в СССР были произведены в апреле-мае 1931 г. Они были осуществлены, однако, с разложением изображения на строки по механической системе, т.е. развертка изображения на элементы проводилась с помощью вращающегося диска.

Исследования в области передающих и приемных электронно-лучевых трубок, схем развертывающих устройств, усилителей, телевизионных передатчиков и приемников, достижения в области радиоэлектроники подготовили переход к электронным системам телевидения.

В СССР летом 1938 г. первым заработал опытный Ленинградский телецентр, а в Москве, на Шаболовке, было построено специальное здание; телевизионное оборудование и передатчик заказаны в США, там же прошли стажировку ведущие специалисты. В итоге в стране появился первый Московский телецентр, принятый в постоянную эксплуатацию в декабре 1938 г.

В 1953 г. в США началось регулярное цветное телевизионное вещание, но из-за большой стоимости цветных телевизоров оно стало массовым только через 12-15 лет (первые.10 млн телевизоров были проданы к 1966 г.). В СССР регулярное вещание в цвете началось только в 1967 г., передачи Центрального телевидения стали цветными в 1977 г., а цветное оборудование получило периферийные телецентры в 1987 г.

В начале 90-х гг. XX в. были начаты исследования по передаче цифрового сигнала по эфирным каналам связи. Эта технология за короткий срок получила признание. В настоящее время ее используют более 300 компаний - производителей телевизионной электроники.

Наряду с эфирным телевидением в мире велись работы по созданию систем кабельного телевидения . Первая система кабельного телевидения в США была построена в 1952 г. в г. Лансфорде для приема передач от ближайшего телецентра в г. Филадельфии. Причиной возникновения кабельного телевидения в США в 1948 г. стала приостановка выдачи лицензий на новые телевизионные передающие станции почти на четыре года. Однако благодаря высокому качеству и помехозащищенности кабельное телевидение стало основным видом телевидения в крупных городах.

В 1960 - 1970-е гг. в СССР в соответствии с концепциями развития телевизионного вещания была создана огромная, практически тотальная система коллективного приема телевидения - почти 80 % телезрителей в городах получали телевидение по коаксиальному кабелю.

В последние годы кабельное телевидение стало одним из наиболее динамично развивающихся направлений телекоммуникационных сетей. Преимуществом телевизионных кабельных сетей является, что что они могут использоваться также для доступа к глобальной сети Интернет или передачи информации с приборов учета энергии и воды.

Рассмотренные выше радио- и телевизионные системы с использованием радиоканалов для передачи данных являются основными элементами беспроводных телекоммуникационных систем, включающих спутниковые системы и системы мобильной сотовой связи.

История развития компьютерных сетей

Компьютерные сети являются логическим результатом эволюции развития компьютерных технологий. Постоянно возрастающие потребности пользователей в вычислительных ресурсах обусловили попытки специалистов компьютерных технологий объединить в единую систему отдельные компьютеры.

Обратимся сначала к компьютерному корню вычислительных сетей. Первые компьютеры 50-х годов - большие, громоздкие и дорогие - предназначались для очень небольшого числа избранных пользователей. Часто эти монстры занимали целые здания. Такие компьютеры не были предназначены для интерактивной работы пользователя, а использовались в режиме пакетной обработки.

Системы пакетной обработки, как правило, строились на базе мэйнфрейма - мощного и надежного компьютера универсального назначения. Пользователи подготавливали перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр (рис.).

Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день. Таким образом, одна неверно набитая карта означала как минимум суточную задержку. Конечно, для пользователей интерактивный режим работы, при котором можно с терминала оперативно руководить процессом обработки своих данных, был бы удобней. Но интересами пользователей на первых этапах развития вычислительных систем в значительной степени пренебрегали. Во главу угла ставилась эффективность работы самого дорогого устройства вычислительной машины - процессора, даже в ущерб эффективности работы ис­пользующих его специалистов.

В начале 60-х гг. XX в. стали развиваться интерактивные (с вмешательством пользователя в вычислительный процесс) многотерминальные системы разделения времени. В таких системах мощный центральный компьютер (мэйнфрейм) отдавался в распоряжение нескольких пользователей. Каждый пользователь получал в свое распоряжение терминал (монитор с клавиатурой без системного блока), с помощью которого он мог вести диалог с компьютером. Компьютер по очереди обрабатывал программы и данные, поступающие с каждого терминала. Поскольку время реакции компьютера на запрос каждого терминала было достаточно мало, то пользователи практически не замечали параллельную работу нескольких терминалов и у них создавалась иллюзия монопольного пользования компьютером. Терминалы, как правило, рассредоточивались по всему предприятию, и функции ввода-вывода информации были распределенными, но обработка информации проводилась только центральным компьютером.

Такие многотерминальные централизованные системы внешне напоминали локальные вычислительные сети, до создания которых в действительности нужно было пройти еще большой путь. Сдерживающим фактором для развития компьютерных сетей был прежде всего экономический фактор. Из-за высокой в то время стоимости предприятия не могли приобрести сразу несколько компьютеров, а значит и объединить в вычислительную сеть было нечего.

Первые сети - глобальные

Развитие компьютерных сетей началось с решения более простой задачи - доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы в этом случае соединялись с компьютером через телефонные сети с помощью специальных устройств - модемов. Следующим этапом в развитии компьютерных сетей стали соединения через модем не только «терминал-компьютер», но и «компьютер-компьютер». Компьютеры получили возможность обмениваться данными в автоматическом режиме, что является базовым механизмом любой компьютерной сети. Тогда впервые появились в сети возможности обмена файлами, синхронизации баз данных, использования электронной почты, т.е. службы, являющиеся в настоящее время традиционными сетевыми сервисами. Такие компьютерные сети получили название глобальных компьютерных сетей.

Глобальные сети ( Wide Area Networks , WAN ) – сети объединяющие территориально рассредоточенные компьютеры, возможно находящиеся в различных городах и странах.

Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи, лежащие в основе современных вычислительных сетей. Такие, например, как многоуровневое построение коммуникационных протоколов, концепции коммутации и маршрутизации пакетов.

Глобальные компьютерные сети очень многое унаследовали от других, гораздо более старых и распространенных глобальных сетей - телефонных. Главное технологическое новшество, которое привнесли с собой первые глобальные компьютерные сети, состояло в отказе от принципа коммутации каналов, на протяжении многих десятков лет успешно использовавшегося в телефонных сетях.

Выделяемый на все время сеанса связи составной телефонный канал, передающий информацию с постоянной скоростью, не мог эффективно использоваться пульсирующим трафиком компьютерных данных, у которого периоды интенсивного обмена чередуются с продолжительными паузами. Натурные эксперименты и математическое моделирование показали, что пульсирующий и в значительной степени не чувствительный к задержкам компьютерный трафик гораздо эффективней передается сетями, работающими по принципу коммутации пакетов, когда данные разделяются на небольшие порции - пакеты, - которые самостоятельно перемещаются по сети благодаря наличию адреса конечного узла в заголовке пакета.

Так как прокладка высококачественных линий связи на большие расстояния обходится очень дорого, то в первых глобальных сетях часто использовались уже существующие каналы связи, изначально предназначенные совсем для других целей. Например, в течение многих лет глобальные сети строились на основе телефонных каналов тональной частоты, способных в каждый момент времени вести передачу только одного разговора в аналоговой форме. Поскольку скорость передачи дискретных компьютерных данных по таким каналам была очень низкой (десятки килобит в секунду), набор предоставляемых услуг в глобальных сетях такого типа обычно ограничивался передачей файлов, преимущественно в фоновом режиме, и электронной почтой. Помимо низкой скорости такие каналы имеют и другой недостаток - они вносят значительные искажения в передаваемые сигналы. Поэтому протоколы глобальных сетей, построенных с использованием каналов связи низкого качества, отличаются сложными процедурами контроля и восстановления данных.

Исторически первые компьютерные сети были созданы агентством по защите прогрессивных исследовательских проектов DARPA по заданию военного ведомства США. В 1964 г. были разработаны концепция и архитектура первой в мире компьютерной сети ARPAnet(от англ. Advanced Research Projects Agency Network), в 1967 г. впервые было введено понятие «протокол компьютерной сети». В сентябре 1969 г. произошла передача первого компьютерного сообщения между компьютерными узлами Калифорнийского и Стенфордского университетов. В 1977 г. сеть ARPANET насчитывала 111 узлов, в 1983 - 4 тыс. Сеть объединяла компьютеры разных типов, работавших под управлением различных операционных систем с дополнительными модулями, реализовавшими коммуникационные протоколы, общие для всех компьютеров сети. Такие операционные системы считаются первыми сетевыми операционными системами. Сеть ARPANET прекратила свое существование в 1989 г.

Прогресс глобальных компьютерных сетей во многом определялся прогрессом телефонных сетей.

С конца 60-х годов в телефонных сетях все чаще стала применяться передача голоса в цифровой форме.

Это привело к появлению высокоскоростных цифровых каналов, соединяющих автоматические телефонные станции (АТС) и позволяющих одновременно пере­давать десятки и сотни разговоров. Была разработана специальная технология для создания так называемых первичных, или опорных, сетей. Такие сети не предоставляют услуг конечным пользователям, они являются фундаментом, на котором строятся скоростные цифровые каналы «точка-точка», соединяющие оборудование других, так называемых наложенных сетей, которые уже работа­ют на конечного пользователя.

Сначала технология первичных сетей была исключительно внутренней технологией телефонных компаний. Однако со временем эти компании стали сдавать часть своих цифровых каналов, образованных в первичных сетях, в аренду пред­приятиям, которые использовали их для создания собственных телефонных и глобальных компьютерных сетей. Сегодня первичные сети обеспечивают скоро­сти передачи данных до сотен гигабит (а в некоторых случаях до нескольких терабит) в секунду и густо покрывают территории всех развитых стран.

К концу 1970-х годов сеть APRAnet насчитывала уже около 200 оконечных сис­тем. Через 10 лет число хостов в Интернете, уже объединявшем множество других компьютерных сетей, достигло 100 тысяч. Таким образом, 1980-е годы характери­зуются стремительным распространением созданных ранее сетевых технологий.

В начале 80-х происходило активное объединение локальных сетей университе­тов в крупные региональные сети. Примерами могут служить сеть B1TNET, обес­печивавшая обмен файлами и электронной почтой между университетами на се­веро-западе США, CSNET, объединившая исследователей в области сетевых технологий независимо от APRAnet, и др. В 1986 году была разработана сеть NSFNET, позволившая получить доступ к вычислительным ресурсам суперком­пьютеров. Начальная скорость магистрали, составившая 56 Кбит/с, к концу деся­тилетия выросла до 1,5 Мбит/с. Магистраль NSFNET позволила объединить меж­ду собой региональные компьютерные сети США.

В 1980-е годы APRAnet уже содержала многие из компонентов, которые составля­ют основу современного Интернета. 1 января 1983 года стандартный протокол NCP, предназначенный для обмена данными между хостами, был заменен стеком про­токолов TCP/IP (RFC 801). С этого времени стек TCP/IP используется всеми хостами Интернета. В конце 80-х в протокол TCP были внесены значительные усовершенствования, направленные на обеспечение оконечными системами конт­роля переполнения. Кроме того, была разработана система доменных имен (Domain Name System, DNS), связавшая мнемонические имена Интернет-ресурсов с их 32-разрядными адресами (RFC 1034).

Параллельно с развитием APRAnet в США во Франции в начале 1980-х годов воз­ник проект Minitel, имевший поддержку со стороны правительства Франции и поставивший перед собой амбициозную цель - связать все сети в единую компь­ютерную сеть. Система, разработанная Minitel, представляла собой открытую ком­пьютерную сеть с коммутацией пакетов (протокол Х.25 с поддержкой виртуаль­ного канала), состоявшую из Minitel-серверов и недорогих пользовательских терминалов со встроенными низкоскоростными модемами. Большой успех при­шел к проекту Minitel после того, как французское правительство объявило о раз­даче бесплатных терминалов всем желающим для домашнего пользования. Сеть Minitel содержала как бесплатные, так и платные информационные ресурсы. В зените своей популярности в середине прошлого десятилетия Minitel поддерживала более чем 20 000 видов обслуживания - от удаленных банковских операций до организации доступа к специализированным исследовательским базам данных.

27 марта в Центре международной торговли на Краснопресненской набережной стартовал отраслевой Конгресс разработчиков и пользователей технологии блокчейн, собравший более 2000 участников.

«Конгресс РАКИБ #БЛОКЧЕЙНРФ-2018» был начат сенсационной пленарной дискуссией о развитии блокчейн-технологий, в которой приняли участие представители исполнительных и законодательных органов власти, поделившиеся мнением о становлении новой цифровой экономики в стране, опыте применения блокчейн-технологий, а также их перспективах.

Ключевыми спикерами секции выступили советник Президента Российской Федерации по развитию Интернета Герман Клименко, бизнес-обмудсмен Борис Титов, председатель комитета Государственной Думы РФ по финансовому рынку.

Модератор дискуссии, легендарный журналист и телеведущий Александр Любимов, предложил начать мероприятие с минуты молчания, которой почтили память погибших в Кемерово.

Ведущий российский медиаменеджер сообщил, что председатель Государственной Думы Вячеслав Володин и председатель Комитета по государственному строительству и законодательству Павел Крашенинников внесли на рассмотрение депутатов законопроект, согласно которому в Гражданский кодекс Российской Федерации внесут исторические изменения.

В главном законодательном акте, регулирующем нормы гражданского права, будет закреплено понятие цифры, как имущества. И стоит предположить, что это станет тем долгожданным импульсом для развития цифровой экономической отрасли России, который даст возможность сохранить за нами пальму первенства в мировой криптоэкономике и блокчейне.

Президент компании «ВИDgital» подчеркнул: до недавнего времени складывалось впечатление, что в России существует очень много сил, прежде всего, в политическом истеблишменте, которые хотят запретить криптовалюту и блокчейн. Неоднократно проводились параллели, посредством которых отмечалась опасность потенциальной зависимости от данных инноваций, сопоставимая с зависимостью мировой экономики от курса доллара.

Альтернативная точка зрения была в корне противоположной. Подчеркивалось, что именно в данном направлении нам стоит двигаться, совершать прорыв и становиться лидерами мирового масштаба. На каком же этапе своего развития находится эта дискуссия сегодня?

Советник президента Российской Федерации Герман Клименко подчеркнул, что для сохранения лидирующих позиций в мировой экономике необходимо быть мобильным, оперативно меняться в мейнстриме трансформационных преобразований, отвечать требованиям дня. Это подтверждает история развития интернет-технологий, на освоение которых у государственных структур было потрачено около 20 лет.

Герман Клименко также отметил, что именно сегодня наступает особенно интересное время для продуктивного развития цифровой экономики:

«Мы находимся на самом интересном этапе, когда между государством и обществом назревает консенсус, в том числе, в сфере развития ICO и блокчейн-технологий», - заявил он.

Также Герман Клименко выразил уверенность, что достигнутое взаимопонимание между государством и блокчейн-сообществом приведет к многочисленным позитивным свершениям в России и во всем мире. Он напомнил, что глава Российского государства в своем выступлении перед членами Совета Федерации заявил: «Тот, кто пропустит этот технологический рывок, потеряет все и навсегда».

Была затронута и активно обсуждаемая сегодня тема создания единой евразийской криптовалюты. Герман Клименко полагает, что это являлось бы весьма логичным шагом, ведь основная задача современных криптовалют – межгосударственные расчеты.

«Но необходимо отдавать себе отчет, что пока не будут достигнуты определенные договоренности на межгосударственном уровне, и оборот криптовалют не пройдет через процедуру легализации, говорить о свершениях в евразийском или мировом масштабе не приходится», - отметил он.

Практика Евросоюза, по мнению Германа Клименко, может быть очень хорошим примером того, как могут работать криптосистемы.

Особого внимания на пленарном заседании был удостоен вопрос регулирования и контроля оборота цифровых денег. Возникающее в обсуждаемых законопроектах понятие цифровой ценности, а также сопряженных с ней процессов, вызовет изменения в Гражданском кодексе. Следовательно, на одно из уже существующих или вновь создаваемых ведомств должна быть возложена обязанность по контролю.

Кто же это будет? Росфинмониторинг? Этот вопрос, с точки зрения Германа Клименко, является наиболее дискуссионным. Ведь, с одной стороны, система является децентрализованной. С другой - для того, чтобы поместить в эту систему достоверную информацию, необходим валидатор.

Ответ появится в результате принятия Государственной Думой Российской Федерации ряда законов, которые уже внесены на обсуждение народных избранников. Они разработаны под общим руководством участвовавшего в дискуссии Анатолия Аксакова, председателя комитета Госдумы по экономической политике, инновационному развитию и предпринимательству.

На данные нормативно-правовые акты возлагаются большие надежды, так как обсуждаемый сектор цифровой экономики все более ощутимо страдает от отсутствия инвестиций. Российским банкам, в отсутствии регулирующего вопросы законодательства, запрещено его финансирование, что вызывает эффект «кислородного голодания».

Выступивший на конференции Борис Титов, уполномоченный при Президенте России по правам предпринимателей, отметил чрезмерную зависимость российской экономики от сырьевого фактора. Он не исключил, что в новейшей истории нашей страны ценность нефти и газа будет иной – менее высокой.

Следовательно, необходимо приложить все усилия для совершенствования новой модели развития, в которой доминирующим и преобразующим фактором является цифровая экономика. Борис Титов отметил, что блокчейн внедряется во все области жизни, становится интересен для всех, может кардинальным образом изменить отечественную банковскую и налоговую систему. Экс-кандидат в президенты выразил уверенность в том, что в обозримом будущем с помощью передовых решений сферы блокчейн-технологий смогут проходить выборы, что позволит сделать процесс народного волеизъявления более прозрачным и четким.

«Партией роста», которую представляет политик, также выдвинуты на всеобщее обсуждение предложения по созданию блокчейн-законодательства. Эти нормативно-правовые акты базируются на лучших мировых тенденциях и достижениях. Внесение законопроекта на обсуждение в Госдуму Борис Титов расценил как прорыв, отметив, что необходимо прояснить правовую основу майнинга и вопросы его налогообложении, которые сегодня туманны.

Сколько же времени займет разработка таких важных для целого ряда позитивных процессов российской экономики нормативно-правовых актов? Ведь в соседней Белоруссии законодательство, регулирующее процессы цифровой экономики, уже существует. И возникло оно буквально за 1 день (во многом благодаря тому, что власть в этой стране сосредоточена в одних руках).

Борис Титов выразил надежду, что развитие законодательства в России будет быстрым, если процессы не встретят противодействия со стороны влиятельных представителей политического истеблишмента нашей страны.

Дополняя его выступление, Анатолий Аксаков отметил, что президент и правительство понимают, что цифровая экономика – шанс для России сохранить за собой передовые позиции в мире и осуществить стремительный прорыв на новый уровень в достаточно короткий срок .

Сославшись на исследования «McKinsey Global Institute», Анатолий Аксаков сообщил, что представители этой всемирной исследовательской организации авторитетно засвидетельствовали: всего за 5-7 лет, опираясь на интеллектуальный потенциал, который имеет Россия в цифровой экономике, страна может выйти на уровень передовых стран мира (США, Южной Кореи).

«Передовые позиции в цифровой экономике, которые Россия может занять в перспективе, самым положительным образом повлияют и на другие, базовые отрасли, будь то сельское хозяйство или промышленность» - заверил Анатолий Аксаков.

По мнению политика сегодня не осталось чиновников, которые не понимали бы важную роль блокчейна и криптовалют в судьбе нашей страны. Но, конечно же, при этом у представителей исполнительной и законодательной власти России есть четкое понимание, что данная сфера должна быть регулируемой.

Коснувшись уже затронутого вопроса о том, какое ведомство возьмет на себя ответственность за регулирование этих процессов, Анатолий Аксаков отметил, что, по крайней мере, на первых порах регуляторов будет много, ведь ожидаемые преобразования в цифровой экономике затронут совершенно разные сферы.

Вопросы, связанные с финансами, однозначно, возьмет на себя Центробанк России. Определенную нишу в контроле над процессами займет Минкомсвязи. Аспекты национальной безопасности, где также сыграет свою особую роль блокчейн, будут курировать силовые структуры.

Что же можно сказать о налогообложении тех, кто сегодня увлечен майнингом, и с тревогой ждет законодательных нововведений?

Анатолий Аксаков отметил, что этот вид деятельности будет приравнен к предпринимательству с установлением соответствующей налоговой нагрузки для майнеров. Однако для данного сектора предпринимательской деятельности, скорей всего, будут установлены налоговые каникулы в течение 2 лет.

Также председатель комитета Госдумы по экономической политике, инновационному развитию и предпринимательству подчеркнул, что законопроект, связанный с изменениями в Гражданском кодексе и вводящий понятие цифры, как собственности, станет базовым для всех остальных регулирующих вопросы цифровой экономики законов. В подготовке законодательного пакета документов было задействовано огромное количество лучших отечественных специалистов в сфере экономики.

Согласно поручению главы российского государства Владимира Путина пакет нормативно-правовых актов, регулирующих вопросы цифровой экономики, должен быть принят до 1 июля 2018.

Ожидается, что заявленные законопроекты пройдут три чтения в законодательном собрании Российской Федерации и будут приняты уже июне. Это позволит снять если не все, то многие вопросы, касающиеся законодательного статуса ICO, криптовалют и блокчейна в нашей стране.

Развитие электрических систем передачи информации началось с изобретения П.Л. Шиллингом в 1832 году телеграфной линии с использованием иголок. Медный провод использовался как линия связи. Такая линия обеспечивала скорость передачи информации - 3 бит/с (1/3 буквы). Первая телеграфная линия Морзе (1844 г) обеспечивала скорость 5 бит/с (0,5 буквы). В 1860 г. была изобретена печатающая телеграфная система. Она обеспечивала скорость - 10 бит/с (1 буква). Уже в 1874 г. система шестикратного телеграфного аппарата Бодо обеспечивала скорость передачи - 100 бит/с (10 букв). Первые телефонные линии были построены на основе изобретенного в 1876 году Беллом телефона. Они обеспечивали скорость передачи информации 1000 бит/с (1кбит/с - 100 букв).

Первая телефонная цепь использованная на практике была однопроводной с телефонными аппаратами, включенными на ее концах Громаков, Ю.А. Сотовые системы подвижной радиосвязи. Технологии электронных коммуникаций / Ю.А. Громаков. - М.: Эко-Трендз, 1994. С-132. . Такой способ требовал большого количества соединительных линий и самих телефонных аппаратов. Это устройство в последствии в 1878 году было заменили коммутатором, позволившим соединить несколько телефонных аппаратов через единое коммутационное поле. Первоначально используемые однопроводные цепи с заземленным проводом были заменены двухпроводными линиями передачи до 1900года. Несмотря на изобретение коммутатора, каждый абонент имел свою линию связи. Поэтому необходимо было придумать способ, позволяющий увеличить количество каналов без прокладки дополнительных тысяч километров проводов. Первая коммерческая система уплотнения была создана в США. Благодаря этому устройству в 1918 году между Балтимором и Питсбургом начала работать четырехканальная система с частотным разделением каналов. Большинство разработок было направлено на увеличение эффективности систем уплотнения воздушных линий и многопарных кабелей. Именно по этим двум средам передачи были организованы почти все телефонные цепи до второй мировой войны.

В 1920 году была изобретена шести-двенадцати канальная система передачи. Это увеличило скорость передачи информации в заданной полосе частот до 10 000бит/с, (10кбит/с - 1000 букв). Верхние граничные частоты воздушных и многопарных кабельных линий составляли соответственно 150 и 600 кГц. Потребности передачи больших объемов информации требовали создания широкополосных систем передачи.

В 30-40 годах ХХ века были введены в обращение коаксиальные кабели. В 1948 году между городами, находящимися на атлантическом и тихоокеанском побережьях США, была введена в эксплуатацию коаксиально-кабельная система L1. Эта система позволила увеличить полосу пропускания частот линейного тракта до 1,3 МГц, и это обеспечило передачу информации по 600 каналам.

После второй мировой войны начали проводить активные исследования по совершенствованию коаксиально-кабельных систем. Изначально коаксиальные цепи прокладывались отдельно, но позднее их объединили в несколько коаксиальных кабелей в общей защитной оболочке. Например, американская фирма Белл разработала в 60-е годы ХХ века межконтинентальную систему с шириной полосы 17,5 МГц (3600 каналов по коаксиальной цепи или "трубке").

В СССР, в то же время разрабатывалась система К-3600 на отечественном кабеле КМБ 8/6, имеющем 14 коаксиальных цепей в одной оболочке. Через какое-то время изобретают коаксиальную систему с шириной полосы пропускания 60 МГц. Это обеспечивало емкость 9000 каналов в каждой паре. В общей оболочке объединены 22 пары.

Коаксиальные кабельные системы большой емкости использовались для связи между двумя близко расположенными центрами с высокой плотностью населения. Однако стоимость строительства таких систем была высокой. Это происходило из-за малого расстояния между промежуточными усилителями и вследствие большой стоимости кабеля и его прокладки. По современным воззрениям, все электромагнитные излучения, в том числе радиоволны и видимый свет, имеют двойственную структуру и ведут себя то как волнообразный процесс в непрерывной среде то как поток частиц, получивших название фотонов, или квантов. Каждый квант обладает определенной энергией.

Ньютон впервые ввел понятие о свете как о потоке частиц.А. Эйнштейн на основе теории Планка возродил в новой форме в 1905 году корпускулярную теорию света, которую теперь принято называть квантовой теорией света. В 1917 году он теоретически предсказал явление вынужденного или индуцированного излучения. Благодаря этому впоследствии были созданы квантовые усилители. В 1951 году советские ученые В.А. Фабрикант, М.М. Вудынский и Ф.А. Бутаева получили патент на открытие принципа действия оптического усилителя. В 1953 году предложение о квантовом усилителе было сделано Вебером. В 1954 г.Н.Г. Басов и А.М. Прохоров предложили теоретически обоснованный проект молекулярного газового генератора. В 1954 году, независимо от них, Гордон, Цейгер и Таунс опубликовали сообщение о создании действующего квантового генератора на пучке молекул аммиака. В 1956 г. Бломберген установил возможность построения квантового усилителя на твердом парамагнитном веществе, а в 1957 году этот усилитель был собран Сковелем, Фехером и Зайделем. Построенные до 1960 г. квантовые генераторы и усилители получили название мазеров. Это название происходит от первых букв английских слов "Microwave amplification by stimulated emission of radiation", что означает "усиление микроволн с помощью вынужденного излучения".

Следующий этап развития связан с перенесением известных методов в оптический диапазон. В 1958 году Таунс и Шавлов теоретически обосновали возможность создания оптического квантового генератора (ОКГ) на твердом теле. В 1960 году Мейман построил первый импульсный ОКГ на твердом теле - рубине. В этом же году вопрос об ОКГ и квантовых усилителях независимо был проанализирован Н.Г. Басовым, О.Н. Крохиным и Ю.М. Поповым Измайлов, Ю.Д. Развитие российской государственной группировки спутников связи и вещания / Ю.Д. Измайлов // Технологии и средства связи. Спутниковая связь и вещание. - 2008. - С. - 54.

Первый газовый (гелий-неоновый) генератор был создан в 1961 году Джанаваном, Беннетом и Эрриотом. В 1962 г. был создан первый полупроводниковый ОКГ. Оптические квантовые генераторы (ОКГ) получили название лазеров. После создания первых мазеров и лазеров их стали использовать в системах связи.

Волоконная оптика появилась в начале 50-х годов как новое направление техники. В то же время стали делать тонкие двухслойные волокна из прозрачных материалов (стекло, кварц и др.). К этому времени было доказано, что если соответствующим образом выбрать оптические свойства внутренней и наружной частей такого волокна, то луч света, введенный во внутрь, будет только по нему и распространяться, отражаясь от оболочки. Даже если волокно изогнуть, луч по прежнему будет удерживаться внутри сердечника. Таким образом, световой луч, попадая в оптическое волокно, способен распространяться по любой криволинейной траектории. Этот процесс аналогичен, текущему по металлическому проводу, электрическому току. Поэтому двухслойное оптическое волокно часто называют светопроводом или световодом. Стеклянные или кварцевые волокна очень гибкие и тонкие, но не смотря на это прочны (прочнее стальных нитей того же диаметра). Световоды 50-х годов были недостаточно прозрачны, и при длине 5-10 м свет в них полностью поглощался.

В 1966 г. была предложена идея о возможности использования световодов для целей связи. Благодаря техническим разработкам в 1970 г. было добыто сверхчистое кварцевое волокно, способное пропустить световой луч на расстояние до 2 км. В этом же году началось стремительное развитие волоконно-оптической связи. Появились новые методы изготовления волокон; создаются миниатюрные лазеры, фотоприемники, оптические разъемные соединители и т.п.

К 1973-1974 гг. расстояние, проходимое лучом по оптоволокну, достигло 20 км, а к началу 80-х годов 200 км. В то же временя скорость передачи информации по ВОЛС возросла в несколько миллиардов бит/с. Выяснилось, что ВОЛС имеют целый ряд достоинств.

На световой сигнал не влияют внешние электромагнитные помехи. Сигнал невозможно подслушать или перехватить. Волоконные световоды имеют отличные технические и экономические показатели: применяемые материалы имеют малую удельную массу, не нуждаются в тяжелых металлических оболочках; просты при прокладке, монтаже, эксплуатации. Волоконные световоды, как и обычные электрические провода, можно закладывать в подземную кабельную канализацию, монтировать на высоковольтных ЛЭП или силовых сетях электропоездов, а также совмещать с любыми другими коммуникациями. В отличие от электрических цепей, характеристики ВОЛС не зависят от их длины, от включения или отключения дополнительных линий. В волоконных световодах не бывает искрение и замыкание, что открывает возможность использования их во взрывоопасных и подобных им производствах.

Важное значение в распространении ВОЛС имеет экономический фактор. В конце двадцатого века волоконные линии связи имели одинаковую стоимость с проводными линиями Фролов А.В., Фролов Г.В. Локальные сети персональных компьютеров. - М.: "Диалог-МИФИ"2002. С-45. Но со временем, учитывая дефицит меди, положение непременно изменится. Это убеждение основано на неограниченных сырьевых ресурсах кварца, который является основным материалом световода, тогда как основу проводных линий составляют такие металлы, как медь и свинец. В настоящее время оптические линии связи доминируют во всех телекоммуникационных системах, начиная от магистральных сетей до домовой распределительной сети. Благодаря развитию оптико-волоконных линий связи активно внедряются мультисервисные системы, которые дают возможность довести до конечного потребителя в одном кабеле телефонию, телевидение и Интернет.

Каждый из направлений развития техники передачи сообщений (телефония, телеграфия, телевидение, звуковое вещание и т. д.) И устройств для их приема (телефоны, телеграфные аппараты, телевизоры, радиоприемники и т. д.) Имеет свою историю изобретения, создания и эксплуатации .

Известны имена многих изобретателей, но в ряде случаев трудно приписать кому-либо одному первенство. В 1792 г.. Была построена первая линия (225 км) семафорной передачи сигналов, что связала Париж и Лилль изобретатели братья К. и И. Шапп. Сигнал проходил весь путь за 2 мин. Прибор назывался «тахиграф» (буквально скорописец), а позже — «телеграф». Телеграф Шаппа был широко распространен в 19 в. В 1839-1854 гг. Действовала самая длинная в мире линия оптического телеграфа Петербург — Варшава (149 станций, 1200 км., 100 сигналов-символов передавались 35 мин).
Оптический телеграф различных конструкций был в эксплуатации около 60 лет, хотя и не обеспечивал (по погодным условиям) высокую надежность и достоверность. Открытие в области электричества способствовали тому, что постепенно телеграф из оптического превращался в электрический. В 1832 г.. российский ученый П. Л. Шиллинг продемонстрировал в Петербурге первый в мире практически пригодный электромагнитный телеграф. Первые подобные линии связи обеспечивали передачу 30 слов в минуту. Существенный вклад в эту область внесли американский изобретатель С. Морзе (в 1837 предложил код — азбуку Морзе), российский ученый Б. С. Якоби (в 1839 предложил буквопечатающий аппарат, в 1840р.- электрохимический способ записи), английский физик Д. Юз (в 1855 разработал оригинальный вариант электромеханического буквопечатающего аппарата), немецкий электротехник и предприниматель Э. Сименс (в 1844 усовершенствовал аппарат Б. С. Якоби), французский изобретатель Ж. Бодо (в 1874 предложил метод передачи нескольких сигналов по одной физической линии — временное уплотнение, на честь заслуг Бодо в 1927 г.. его именем названа единица скорости телеграфирования — бод), итальянский физик Дж. Казелли (в 1856 предложил способ фото телеграфирования и совершил его в России в 1866 на линии Петербург — Москва). В этом же году была завершена работа по прокладке первого кабеля через Атлантический океан. Впоследствии все материки были соединены несколькими подводными линиями, в частности волоконно-оптическими.

В 1876 г.. Американский изобретатель А. Г. Белл получил патент на первый практически пригодный телефонный аппарат, а в 1878 г.. В Нью-Хейвене (США) была введена первая телефонная станция. В России первые городские телефонные станции появились в 1882 г.. В Петербурге, Москве, Одессе и Риге. Автоматическая телефонная станция (АТС) с шаговым искателем создана в 1896 г.. в г. Огаста (США.). Изобретение усилителя электрических сигналов (в 1915 русским инженером В. И. Коваленковым) позволил увеличить дальность телефонной связи благодаря использованию промежуточных усилителей. К 1940-м гг. Были разработаны высокоселективные электрические фильтры, модуляторы, что открыло путь к созданию многоканальных систем передачи с частотным разделением каналов (до 10 тыс. и более), с использованием кабельных, радиорелейных и спутниковых линий связи. В 1940-х гг. были созданы координатные АТС, в 1960-х — квазиэлектронные, а в 1970-х появились первые образцы электронных АТС. В 1960-х гг. появились первые цифровые многоканальные системы передачи.

Развитие телефонии способствовал введению проводного вещания, в котором звуковые программы передаются по отдельным от телефонным проводам. Однопрограммное проводное вещание впервые было начато в Москве в 1925 г.. введением узла мощностью 40 Вт, обслуживающего 50 громкоговорителей, установленных на улицах. С 1962 г.. внедряется 3-программное проводное вещание, в котором две дополнительные программы передаются одновременно с первой методом амплитудной модуляции колебаний несущих с частотами 78 и 120 кГц. Ведутся исследовательские передачи дополнительных программ по телефонным сетям. За рубежом (Германия, Австрия, Италия, Швейцария) системы многопрограммного проводного вещания созданы в 1930-х гг. по телефонным сетям.

Важный шаг в истории электросвязи — изобретение радио А. С. Поповым в 1895 г.. и беспроволочного телеграфа Г. Маркони в 1896-97 гг. С тех пор началось использование электромагнитных волн все более высоких частотах для передачи сообщений. Это послужило толчком для организации радиовещания и появления радиовещательных приемников — первых бытовых радиоэлектронных аппаратов. Первые радиовещательные передачи начаты в 1919-20 гг. с Нижегородской радиолаборатории и из опытных радиовещательных станций Москвы, Казани и других городов. К этому же времени относится начало регулярных передач радиовещания в США (1920 г..) в Питтсбурге и Западной Европе (в 1922 в Лондоне). Регулярное вещание Московского радио на зарубежные страны началось с 1929 г.. на длинных, средних и коротких волнах методом амплитудной модуляции (AM) с двумя боковыми полосами и в УКВ-диапазоне методом частотной модуляции (ЧМ). В связи с теснотой в эфире начат постепенный переход к радиовещания с однополосной модуляцией и в области цифрового радиовещания, часть программ звукового вещания со спутников передается в цифровом виде.

В 1877-80 гг. предложены первые проекты систем механического телевидения М. Санлеком (Франция), де-Пайва (Португалия) и П. И. Бахметьев (Россия). Созданию телевидения способствовали открытия многих ученых и исследователей: А. Г. Столетов установил в 1888-90 гг. основные закономерности фотоэффекта; К. Браун (Германия) изобрел в 1897 электронно-лучевую трубку Ли де Форест (США) создал в 1906 г.. трехэлектродную лампу, существенный вклад внесли также Дж. Берд (Англия), Ч. Ф. Дженкинс (США) и Л. С. Термен (СССР), осуществивших первые проекты систем телевидения с механической разверткой течение 1925-26 гг. Началом ТВ — вещание в стране по системе механического телевидения на диск Нипкова (30 строк и 12.5 кадров / с) считается 1931 г. учитывая узкую полосу частот, занимаемую сигналом этой системы, сигнал передавался с помощью радиовещательных станций в диапазонах длинных и средних волн. Первые опыты по системе электронного телевидения были проведены в 1911 г.. российским ученым Б. Л. Розинг. Существенный вклад в становление электронного телевидения внесли также А. А. Чернышев, Ч. Ф. Дженкинс, А. П. Константинов, С. И. Катаев, В. К. Зворыкин, П. В. Шмаков, П. В. Тимофеев и Г. В. Брауде, предложивших оригинальные проекты различных передающих трубок. Это позволило создать в 1937 г.. первые в стране телецентры — в Ленинграде (на 240 строк) и Москве (на 343 строки, а с 1941 г.- на 441 строка). С 1948 г.. начато вещание по системе электронного телевидения с разложением на 625 строк и 50 полей / с, то есть по стандарту, который принят сейчас большинством стран мира (в США в 1940 г.. принятый стандарт на 525 строк и 60 полей / с).

Работы многих ученых и изобретателей по передаче цветных изображений (А. А. Полумордвинов предложил в 1899 первый проект цветной ТВ-системы, И. А. Адамиан в 1926 г.- трехцветный последовательную систему) явились основой для создания различных систем цветного телевидения. Для ТВ — вещания используются только три системы цветного телевидения: NTSC (вещания начато в США в конце 1953 г..), РАL и SECAM (в 1967 гг. практически одновременно во многих странах). ТВ — сигнал длительное время передавался только в аналоговом виде с помощью AM (звук — методом ЧМ) по открытому пространству или кабеля (в кабельном телевидении). Передача ТВ — сигналов в цифровом виде стала возможной с появлением транзисторов и интегральных микросхем. В настоящее время в ряде стран являются цифровые телецентры, в частности в Санкт-Петербурге. Будущее связывают с передачей ТВ — сигнала в цифровом виде от телецентра до абонентских цифровых телевизоров по распределительной сети на волоконно-оптическом кабеле.

Опытная система черно-белого и цветного стереотелевидения создана в 1960-70-х гг. коллективом под руководством П. В. Шмакова в Ленинграде. Он же впервые предложил использовать летательные аппараты для ретрансляции ТВ — радиосигналов. Внедрение стереотелевидения сдерживается в основном созданием эффективного, сравнительно дешевого и простого устройства отображения (экрана).
Выдающимся открытием 20 ст. является создание транзистора в 1948 г.. В. Шокли, У. Браттейном и Дж. Бардин, получивших Нобелевскую премию 1956 г. Успехи полупроводниковой электроники и особенно появление интегральных схем обусловили бурное развитие всех технических средств передачи сообщений электрическими средствами и соответствующих бытовых устройств для их приема. Кроме стационарных радиоприемников и телевизоров появились переносные и автомобильные и даже персональная карманная видеоаппаратура (Япония).

С 1969 г. начато освоение бытового магнитного видеозаписи (японский стандарт EIAJ) и выпуск видеомагнитофонов: с 1970 г.- форматов V-Matic, VCR, 1975 г.- Beta, VCR-LR и VHS, 1979 г.-Video-2000, 1981 г.- S-VHS, 1988 г.-Video-8. Появились первые профессиональные цифровые видеомагнитофоны, в том числе и для телевидения высокой четкости.

Значительные успехи в бытовом звукозаписи связанные с разработкой цифровых аппаратов: в 1977 г. фирмами Philips и Sony начата разработка цифровой пластинки — компакт-диска для воспроизведения на лазерном проигрывателе, в 1982 г. принят международный стандарт на систему; в 1981 и 1982 (Япония) разработаны два стандарта записи для бытовых цифровых магнитофонов R-DAT и S-DAT; в 1984 году (Япония) разработан стандарт E-DAT для цифрового звукового диска, что стирается.

Последнее десятилетие 20 в. полно открытиями новых принципов записи, систем передачи, способов повышения качества воспроизведения изображения и звука. Развитие интегральной схемотехники способствовал внедрению спутникового телевидения, цифровых методов, телевидения повышенного качества (ТПК) и высокой четкости (ТВЧ). Оригинальная система ТПК для передачи сжатых во времени аналоговых компонентных сигналов цветного телевидения предложена в Англии (стандарт MAC и его разновидности) и широко используется в спутниковой ТВ — вещании. В Европе предлагается вести ТВЧ — вещание в стандарте HD-MAC. В Японии уже ведутся 8-часовые ежедневные передачи через спутник программ ТВЧ по системе MUSE.

Настоящая революция произошла и в технике передачи оптических сигналов — началось использование полупроводниковых лазерных диодов и волоконных световодов. Волоконно-оптические системы передачи (ВОСП) открыли новую эру в технике связи по направляющим линиям: экспериментальная ВОСП обеспечивает передачу 32 телепередач в цифровом виде на расстояние более 100 км без единого усилителя.

Развитие информационных сетей идет по пути освоения более высокочастотных диапазонов в спутниковом телевидении; перехода на цифровые методы передачи, приема, коммутации и создание цифровой сети интегрального обслуживания — ЦСИО (Intergrated Service Digital Network — ISDN) и даже широкополосной ЦСИО (Broadband ISDN) с волоконно-оптическим кабелем в качестве среды передачи. Сигнал к абоненту поступает: по открытому пространству на радиовещательные приемники, телевизоры и приемной установки спутникового телевидения, по кабелю (преимущественно коаксиальному) в системах кабельного телевидения; по проводным сетям в звуковом вешания; по телефонным линиям. Система же ЦСИО по одному и тому же каналу передает речь, данные для ЭВМ, информацию факсимиле, изображения. Кроме того, расширяются виды информационных услуг абоненту, запрос и обмен необходимой информацией. В развитых странах Европы, в США и Японии внедрения ЦСИО идет примерно с 1987-89 гг.

Прогресс в развитии средств связи и вычислительной техники привел к переходу в промышленно развитых странах от общества индустриального к обществу информационному. В Японии план создания информационного общества объявлен «национальной целью», а компания NTT сформулировала новый подход к службам связи 21 века, получивший название службы VI & P. Ее составляющими являются: видеотелефоны и другие службы связи (V), интеллектуальная электронная почта (I) и персональные мобильные телефоны (Р). NTT планирует обеспечения этой службой всей территории страны аналогично привычной телефонной сети.

В МККТТ сформировалось новое понятие — интеллектуальная сеть ИС (Intelligent Network), отличительным признаком которой является быстрое, эффективное и экономное предоставление информационных услуг массовому пользователю в любой момент времени. Каждый пользователь ИС, обращаясь через коммутируемую сеть связи (КСС), заказывает себе ту или иную услугу в базе данных, которая предоставляет ему эту услугу обратно через КСС. Таким образом, бытовая РЭА и ПЭВМ постоянно совершенствоваться, и на их основе, вероятно, появятся универсальные (многофункциональные) бытовые терминалы.

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Мировые тенденции в развитии телекоммуникационной отрасли

Министерство РФ по связи и информатизации

СибГУТИ

Кафедра экономической теории

Реферат

на тему:

« Мировые тенденции в развитии телекоммуникационной отрасли »


Выполнил: Седюко А.С.

Проверила: Мельникова Г.П.

Новосибирск-2002

    Введение

    Россия в мировом процессе развития средств связи, компьютеризации и информатизации

    Глобальные тенденции в развитии телекоммуникаций

    Влияние мировых тенденций на отрасль связи в России

    Перспективы российской индустрии связи

    Список используемой литературы

    Введение

Перспективы развития нашей цивилизации во многом зависят от того, насколько быстро и адекватно человечество проникнет в сокровенные тайны информации, осознает преимущества и опасности, связанные со становлением общества, основанного на производстве, распространении и потреблении информации и называемого информационным.

Суть происходящих изменений, охвативших сферу деятельности человека, в самом общем виде заключается в том, что материальная составляющая в структуре жизненных благ уступает место информационной.

И хотя мы по инерции всё ещё продолжаем подсчитывать составляющие основу традиционного богатства тонны, метры, декалитры производимой продукции, становится очевидным, что экономическая мощь государства определяется уже далеко не этими показателями.

Быстрое развитие телекоммуникационной отрасли в России в настоящее время обусловлено, с одной стороны, значительным неудовлетворённым спросом на установку домашних телефонных аппаратов, а с другой – возникновением сегмента новейших высокотехнологичных услуг – передачи данных, сотовой связи и услуг по предоставлению доступа в сеть Интернет. Поэтому развитие телекоммуникационной отрасли происходит в контексте двух тенденций – экстенсивного (насыщение спроса на установку телефонов) и интенсивного роста (освоение новых рынков и современных видов услуг).


2. Россия в мировом процессе развития средств связи, компьютеризации и информатизации


Создание современной динамичной рыночной экономики с механизмом саморегуляции невозможно без надёжной системы связи и телекоммуникаций, которая является важным фактором инвестиционного климата и непременным условием развития бизнеса. Современное состояние мирового рынка услуг связи характеризуется глубокими структурными сдвигами. Компьютеризация телекоммуникационного оборудования идёт параллельно с процессами приватизации национальных систем связи, появлением на рынке крупных фирм – операторов, что приводит к усилению конкурентной борьбы. В результате снижаются расценки на телекоммуникационные услуги, расширяется их ассортимент, а пользователи имеют возможность выбора.

Большинство промышленно развитых стран интенсивно переходит на цифровой стандарт связи, который позволяет мгновенно передавать колоссальные объёмы информации с высокой степенью защиты её содержания. В мировых телекоммуникациях отчётливо проявляется тенденция развития полносервисных сетей, построенных на базе технологии коммутации пакетов услуг.

В настоящее время в первую десятку стран, которые имеют наиболее развитые системы связи и телекоммуникаций, отвечающие мировым стандартам, входят Сингапур, Новая Зеландия, Финляндия, Дания, США, Гонконг, Швеция, Турция, Норвегия и Канада. Россия в рейтинге стран по уровню развития телекоммуникационных систем в конце 90 – х гг. занимала примерно 42 – е место, уступая не только промышленно развитым, но и многим развивающимся государствам.

Доля отраслей связи и телекоммуникаций в ВВП промышленно развитых стран мира постоянно увеличивается и составляет от 5 до 8 %, в России – до 2%.


Историческая справка . Первая телеграфная линия появилась в России в 1835 г. Она соединила Санкт – Петербург с Кронштадтом и предназначалась для нужд военного ведомства. Через четыре года завершилось строительство второй линии, которая соединила северную столицу с Варшавой.

К началу XX в. протяжённость государственных телеграфных линий составила 127 тыс. верст. Они были соединены с телеграфными линиями Китая и Японии.

К тому времени были проложены подводные телеграфные кабели, связывающие Россию с Данией и Швецией.

Телефон впервые появился в России в 1880 г. Первоначально правительство планировало установить государственную монополию на устройство телефонной связи.

Однако из – за высокой стоимости строительства и эксплуатации телефонных станций к их созданию стали привлекать частный капитал. Согласно заключённым контрактам телефонные станции и линии, построенные за счёт частных компаний, через 20 лет эксплуатации переходили в государственную собственность.

К началу XX в. в России действовало 77 государственных и 11 частных телефонных станций. Плата за пользование телефоном в государственном секторе была в 2 раза ниже, чем в частном. Всего в 1913 г. в российских городах было установлено 300 тыс. телефонных аппаратов.


По оценкам специалистов, Россия в конце 90 – х гг. по степени развития средств связи отставала от западных стран на 15 – 20 лет. В 70 – е гг. она практически пропустила первую информационную революцию, не освоив промышленного производства цифровых АТС и оптико – волоконного кабеля.

Основным показателем развития рынка услуг электросвязи общего пользования является число телефонов на 100 жителей, который коррелируется с показателем ВВП на душу населения. В России в конце 90 – х гг. телефонный парк насчитывал более 31 млн. аппаратов, т. е. На 100 жителей приходился 21 телефон (в США и странах Западной Европы – 60 – 70 телефонов).

Связь является одной из первых отраслей российской экономики, в которой стали развиваться рыночные отношения. В 90 – е гг. была приватизирована большая часть государственных предприятий связи, создано 127 акционерных обществ электросвязи, оказывабщих соответствующие услуги в 89 регионах России.

В начале 2001 г. Министерством связи РФ было выдано 7400 лицензий на предоставление услуг связи. Наряду с традиционными операторами сетей общщего пользования на российском рынке функционирует около 4500 новых операторов.

Связь остаётся наиболее привлекательной для капиталовложений из – за рубежа. Если в 1993 г. иностранные инвестиции в наши телекоммуникационные системы составили 300 млн., то в 1997 г. – 820 млн. долл. Наибольшую активность проявляют японские, германские, итальянские, финские, шведские и южнокорейские транснациональные компании. И сегодня Россия по количеству крупных проектов в области телекоммуникаций опережает все страны мира. Среди них выделяется проект под названием « 50х50», который оценивается в 15 млрд. долл. и предусматривает установку 50 новых телефонных станций, прокладку 50 тыс. км. волоконно – оптического кабеля, создание компании – оператора, где, по предварительным оценкам, 20% капитала будет принадлежать иностранным инвесторам.

В Советском Союзе развитие инфраструктуры связи значительно зависело от импорта иностранного оборудования. Более 65 % всех телефонных станций и 30 % кабеля поставлялось из – за зарубежа, главным образом из стран бывшего СЭВ. Все международные и междугородные телефонные станции, примерно 80 % местных АТС, введённых в эксплуатацию с середины 90 – х гг., были произведены за рубежом. Ежегодный объём импорта телекоммуникационного оборудования превышал 500 млн. долл.

В настоящее время ситуация меняется к лучшему. К концу 90 – х гг. появилось отечественное коммутационное оборудование, в частности станции « Квант » , « Элком » , « Бэта » и др. Налажено совместное производство с западными партнёрами, в том числе с фирмами « Алкатель » , « Сименс» и др. По качеству производимая ими продукция не уступает лучшим мировым аналогам. Однако доля отечественного оборудования на внутреннем рынке составляет лишь 20 %.

Компьютеризация и информатизация в современной мировой инфраструктуре выходят на одно из ведущих мест. По расчётам специалистов, в начале XX в. « объём знаний » удваивался каждые 50 лет. В настоящее время этот процесс занимает лишь год, а в недалёкой перспективе, по прогнозам, будет происходить за один месяц.

Спрос на информационные технологии, современные компьютеры и офисное оборудование в последние годы оказывает существенное влияние на динамику и структуру мировой экономики.

Настоящей революцией в сфере информационных технологий стало появление и бурное развитие системы Интернет, сформировавшейся к началу третьего тысячелетия в одну из ведущих отраслей мировой экономики с годовым оборотом свыше 500 млрд. долл. и числом занятых более 3 млн человек. Применение более мощных и быстродействующих компьютеров позволит увеличить число пользователей системой Интернет уже к 2003 г. примерно до 400 млн. В США число её пользователей возросло с 5,8 млн. в начале 90 – х гг. до 70 млн. человек к концу 90 – х гг., а к 2002 г. оно должно увеличиться до 120 млн. человек.

На начало 2001 г. в России эксплуатировалось более 4 млн. компьютеров, отвечающих требованиям Интернета. По прогнозам специалистов, уже к 2003 г. в стране будет 9 – 10 млн. компьютеров, а число пользователей услугами Интернета в России к 2005 г. может возрасти до 6 млн. и к 2010 г. – до 26 млн., при этом уровень интернетизации страны достигнет 18 %.

Таким образом, очевидно, что в ближайшее десятилетие России не удастся сократить разрыв с передовыми странами по степени развития информационных технологий и возможности доступа к мировым информационным ресурсам.

В России не существует общенациональной компьютерной сети, однако достаточно активно действуют отраслевые и локальные информационные сети, особенно в таких сферах, как банковское дело, внешняя торговля, рынок ценных бумаг, экология, медицина и др. Интенсивно развивается сегмент рынка баз данных по российскому законодательству, компьютерной бухгалтерии, автоматизации торговой деятельности.


3.Глобальные тенденции в развитии телекоммуникаций


В каждой стране управление телекоммуникационной отраслью имеет свою специфику. Однако появление цифровых технологий и массовое внедрение услуг по предоставлению доступа в сеть Интернет привели к тому, что сегодня практически любой оператор связи работает не только на локальном (региональном или общенациональном), но и на мировом рынке телекоммуникационных услуг.

Развитие новейших технологий. Появление цифровых технологий способствовало радикальным изменениям в телекоммуникационной отрасли. Услуги традиционной голосовой связи начали вытесняться интерактивными услугами, такими, как Интернет, передача данных, мобильная связь.

Демонополизация рынков. Исторически отрасль связи в любой стране функционировала как естественная монополия, что было обусловлено высоким уровнем издержек по предоставлению доступа к телефонной сети и оказанию телеграфных услуг. В то же время социальная значимость названных услуг не позволяла устанавливать тарифы на уровне, обеспечивающем прибыль, и, следовательно, государственное регулирование было необходимым.

Массовый спрос на услуги доступа в сеть Интернет и мобильной связи привёл к существенным изменениям в структуре управления отраслью. Во многих странах мира порядок выдачи лицензий на предоставление соответствующих услуг был существенно упрощён, что способствовало бурному росту числа конкурирующих операторов сотовой связи и провайдеров услуг по доступу в Интернет и передаче данных. Такие фирмы оказывают услуги в основном через телефонную сеть общего пользования, т. е. Через сеть общенационального или регионального оператора – монополиста.

Упрощение порядка лицензирования новых операторов связи привело к тому, что отраслевые монополии сами стали предоставлять новые услуги. В результате пришлось осваивать доселе незнакомую конкурентную сферу и уступить часть рынка не только новейших, но и традиционных услуг альтернативным операторам.

Необходимо отметить, что естественными монополиями значительной части рынка не означает постепенного исчезновения потребности в услугах традиционной проводной связи. Мобильная связь и Интернет не являются альтернативой традиционным услугам, а только дополняют их. Несмотря на бурное развитие новейших технологий и видов телекоммуникационных услуг, традиционная голосовая связь по – прежнему остаётся востребованной и приносящей доход услугой. В 2000 г. во всём мире объём продаж её услуг составил около 1 трлн. Долл., увеличившись по сравнению с 1997 г. на 22%.

Либерализация тарифов. В последние годы в развитых странах произошли резкие качественные сдвиги в системе решулирования тарифов на услуги традиционной голосовой связи. Если до 1990 – х гг. в мире преобладали административные меры регулирования, связанные с ограничениями нормы прибыли монополистов, то в 1990 – е гг. они стали вытесняться методами так называемого « мотивационного регулирования », направленного на снижение издержек монополистов. В их числе можно назвать:

Устанавливаемый местными властями предел цен на традиционные услуги;

Социальные программы по предоставлению доступа к телефонной сети и сети Интернет потребителям с низкими доходами;

Создание фондов универсальных услуг, в которые платят взносы все операторы, работающие через сеть общего пользования, с целью компенсации традиционному оператору издержек по предоставлению социально значимых услуг.

Глобализация национальных рынков услуг связи. Если раньше деятельность национального оператора – монополиста была ограничена пределами собственной страны, то теперь крупнейшие телефонные компании предоставляют услуги и за рубежом. Это становится возможным в основном путём приобретения крупных пакетов акций иностранных операторов.

Слияния и поглощения телекоммуникаций имели неоднозначные последствия. С одной стороны, глобализация рынков услуг связи неизбежно приводит к изменениям в управлении капиталом операторов, с другой – прокатившаяся «волна» слияний способствовала тому, что компании - «поглотители» эмитировали слишком много облигаций для финансирования поглощений, что привело к снижению кредитных рейтингов многих из них и негативно сказалось на фондовом рынке.


4. Влияние мировых тенденций на отрасль связи в России


За 10 лет реформирования российской экономики в отрасли телекоммуникаций произошли существенные изменения к лучшему. Она превратилась в одну из наиболее динамично развивающихся и обладающих потенциалом долгосрочного экономического роста отраслей. По оценкам министерства по связи и информатизации, для того, чтобы обеспечить 1 % экономического роста в современной России, необходимо достичь 3 % роста в телекоммуникационной индустрии. В этом случае телекоммуникации не только будут способствовать развитию общества и укреплению безопасности страны, но и станут важнейшим источником стабильного экономического роста.

Экономические показатели развития отрасли. В настоящее время уровень телефонной плотности в России составляет немногим более 20 телефонов на 100 жителей, что значительно ниже соответствующих показателей в большинстве индустриально развитых стран. Доля номерной ёмкости электронных (цифровых) АТС в стране не достигает 20 %, в то время как остальные 80 % приходятся на функционально и морально устаревшие аналоговые станции. Несмотря на высокие темпы внедрения современных технологий, процент охвата населения РФ новыми видами связи, такими как сотовая связь, пейджинг, Интернет остаётся низким. В России на конец 2000 г. число пользователей сети Интернет составляло менее 3 млн. человек.

Наиболее динамично развивается сотовая связь. Только за один 1999 г. число её абонентов возросло почти на 80 %. Это обусловлено постепенным ростом платёжеспособного спроса населения, а также политикой снижения тарифов, проводимой крупнейшими компаниями сотовой связи. По прогнозам западных экспертов к 2004 г. пользователей услуг мобильной связи будет столько же, сколько и абонентов телефонных сетей общего пользования.

Либерализация рынков. В 1999 – 2000 гг. значительно упростились механизмы лицензирования, сертификации и выделения частотного ресурса новым операторам связи. В результате число альтернативных операторов, предоставляющих услуги связи, увеличилось. Практически все традиционные операторы проводной связи также оказывают услуги сотовой и пейджинговой связи и предоставляют доступ в Интернет.

Однако реформы пока не затронули сферу тарифов на услуги местной связи для населения. За 10 лет рыночных преобразований не произошло изменений в установлении тарифов на услуги связи, которые для каждого региона назначаются федеральным центром. У большинства операторов связи тарифы на услуги местной связи для населения покрывают около 70 % их себестоимости. Низкорентабельные услуги местной телефонной связи окупаются только благодаря их перекрёстному субсидированию за счёт услуг междугородной и международной связи.

Глобализация российского рынка телекоммуникаций. Отечественный рынок услуг связи остаётся достаточно замкнутым. С одной стороны это обусловлено огромными масштабами территории страны, благодаря которым формируются основные доходы операторов связи. С другой – Россия пока находится вне мирового рынка международного трафика, что до сих пор было следствием недостаточно высокого уровня цифровизации магистральных каналов и более низкого качества связи по сравнению с мировыми стандартами. Однако к 2000 г. качество междугородной связи в стране существенно улучшилось, и её роль в международном транзите телекоммуникационных услуг стала возрастать.

Поскольку Россия только начинает осваивать мировой телекоммуникационный рынок, до участия наших операторов в международных слияниях и поглощениях дело ещё не дошло. Однако стремление к «глобализации по–российски» уже начинает проявляться в том, что правительство с 2000 г. приступило к реализации не знающего аналогов в мире плана объединения 87 региональных операторов – монополистов в 7 крупных межрегиональных компаний. Основная роль в его осуществлении принадлежит крупнейшему государственному телекоммуникационному холдингу – ОАО « Связьинвест ».

5. Перспективы российской индустрии связи


Телекоммуникации становятся одним из ключевых факторов развития России в 21 веке. Предстоит создать основы нового информационного общества, обеспечить интеграцию страны в глобальную инфотелекоммуникационную инфраструктуру и реализацию прав граждан на доступ к достижениям цивилизации, в том числе к мировым информационным ресурсам, дистанционному образованию, телемедицине, мировому рынку труда, электронной коммерции, культурным ценностям.

Создание российской информационно – телекоммуникационной инфраструктуры следует рассматривать как важнейший фактор подъёма национальной экономики, роста деловой и интеллектуальной активности общества, укрепления авторитета страны в глобальном масштабе. Опережающее развитие телекоммуникаций – необходимое условие развития инфраструктуры бизнеса, формирования благоприятных условий для привлечения иностранных инвестиций, решения вопросов занятости населения.

В перспективе российская индустрия средств связи, которая сейчас способна производить лишь отдельные виды телекоммуникационного оборудования, используемого в мире, должна полностью обеспечить внутренние потребности в средствах связи для различных сетей телекоммуникаций.

Россия имеет потенциальные возможности по развитию процесса компьютеризации и информатизации, а также интеграции в мировое информационное пространство, обладает уникальным сочетанием благоприятных факторов для широкого развития услуг в области заказных разработок и информационных систем.

Удовлетворение огромного спроса на услуги в области оффшорного программирования может стать важным источником доходов страны. Экспорт интеллекта способен приносить стране не меньше доходов, чем вывоз невосполнимых природных ресурсов.

6. Список используемой литературы.

    Мильчакова Н. Телекоммуникации в России:структурные реформы и повышение капитализации компаний//Вопросы экономики, 2001, №7

    Адрианов В. Россия в мировом процессе развития средств связи, компьютеризации и информатизации//Экономист, 2001, №8

    Нижегородцев Р. Об информационной экономике //РЭЖ, 1994, №4

    Сидоров А., Байнев В. Информация как экономическая категория//ЭКО, 2000, №8

Похожие рефераты:

Понятие коммуникационной инфраструктуры INTERNET, ее проблемы и перспективы совершенствования. Технологии широкополосного доступа в INTERNET, их доступность, перспективы развития. Специфика развития широкополосного беспроводного доступа в России.

Изучение тенденций развития информационных технологий в Тунисе – широкого класса дисциплин и областей деятельности, имеющих отношение к управлению и обработке данных вычислительной техникой. Задачи Тунисского агентства Интернет. Электронная коммерция.

Преимущества цифрового поколения мобильной связи: защита от прослушивания, совершение голосовых звонков, обмен текстовыми и мультимедийными сообщениям, доступ к сети Интернет. Стандарты операторов CDMA, GSM и UMTS. Перспективы развития 4G технологий.

Современные коммуникационные технологии и услуги. IP-телефония. Перспективы развития средств связи и информационных технологий. Российские особенности в области организации телефонной связи. IP-телефония. Пиринговая технология в области IP-телефонии.

Peoplenet - национальный провайдер телекоммуникационных услуг, в том числе - скоростного мобильного Интернета. Рост популярности беспроводного Интернета. Безопасность и конфиденциальность. Настройки доступа к Интернет. Настройка на Macintosh и Linux.

История изобретения радиосвязи великим русским ученым А.С. Поповым. Основные этапы развития систем радиодоступа. Аналоговые средства доступа к автоматическим телефонным станциям. Узкополосные цифровые системы радиодоступа к цифровым и аналоговым АТС.