Жидкокристаллические цифро-знаковые индикаторы. Управление ЖКИ без контроллера: цифровой термометр, цифровой дисплей

Жидкие кристаллы - это вещества, проявляющие в определенном температурном интервале свойства как жидкости, так и кристаллов. Они способны в жидком состоянии сохранять упорядоченность молекул (по­добно кристаллам). Для создания индикаторы на жидких кристаллах используются так называемые нематические жидкие кристаллы, которые являются структурной разновидностью данного класса веществ. Материалом для них служат смеси органических соединений, молекулы которых формируются в упорядоченные решетки.

Тонкий слой ЖК вещества (десятки микрон), помещенный, например, между двумя стеклянными пластинами, довольно хорошо пропускает свет. Однако толстые слои жидкости кристаллов (несколько миллиметров) практически непрозрачны. Это связано с заметными тепловыми беспорядочными колебаниями больших групп молекул, что приводит к изменениям показателя преломления и в конечном счете сильному рассеянию света в жидкокристаллической среде. Особенный интерес представляет изменение оптических характеристик жидких кристаллов под действием внешнего электромагнитного поля. Именно это свойство используется для построения элементов индикации на основе тонких прозрачных слоев жидкокристаллических веществ.

Рис. 1. Жидкокристаллический индикатор на эффекте динамического расстояния:

1-прокладка; 2 - жидкие кристаллы; 3 - отражающее покрытие; 4 - заднее стекло; 5 - общий электрод; 6 - прозрачные электроды сегментов; 7 - переднее стекло

Рис. 2. Жидкокристаллический индикатор, основанный на эффекте вращения плоскости поляризации слоем жидких кристаллов, исчезающем под действием электрического поля (твист-эффект):

1- стеклянная ячейка; 2 - отражающее покрытие; 3-поляроидная пластина с вертикальной плоскостью поляризации; 4-жидкие кристаллы; 5 - прокладка; б - прозрачные электроды; 7 - поляроидная пластина с горизонтальной плоскостью поляризации

Существуют два принципа (эффекта) работы индикаторы на жидких кристаллах. Первый из них состоит в том, что при приложении электрического поля к тонкому слою ЖК вещества, заключенному между двумя стеклянными пластинками, происходит разрушение упорядоченной структуры жидких кристаллов, что вызывает диффузное рассеяние света в этой области (эффект динамического рассеяния). В результате прозрачный жидкокристаллический слой становится мутным и при внешнем освещении возникает контраст между возбужденным участком жидкости кристаллов и невозбужденным (фоном). При снятии внешнего электрического поля первоначальная структура жидких кристаллов восстанавливается и указанный контраст исчезает.

Как показано на рис. 1, принципиально жидкокристаллические индикаторы состоят из двух плоскопараллельных стеклянных пластин, между которыми находится слой жидких кристаллов толщиной 12- 20 мкм. На одной из стеклянных пластин прозрачным токопроводящим покрытием нанесен рисунок цифры, который представляет собой конфигурацию в виде сегментов, с помощью которых можно воспроизвести цифры от 0 до 9. На другой пластине прозрачным токопроводящим покрытием нанесен электрод, являющийся общим для цифр. Обе пластины покрытыми поверхностями обращены друг к другу.

Существуют индикаторы, работающие в отраженном («на отражение») и проходящем («на просвет») свете. В первом случае на заднее стекло ИЖК наносится отражающий слой, во втором - за индикатором должен быть использован дополнительный источник света.

При подаче управляющего напряжения жидкие кристаллы в зоне действия электрического поля теряют прозрачность, и если задняя отражающая поверхность белая, то наблюдатель видит темную цифру на светлом фоне. Если задний отражатель имеет черный цвет и внутренние поверхности корпуса также зачернены, то матово-светлое изображение цифры будет хорошо заметно на черном фоне.

При работе прибора на просвет изображение цифры более темное, чем фон. Если при этом мощность установленного источника света составляет 0,5 Вт, то яркость жидко кристаллического инди катора становится сравнимой с яркостью газоразрядного или светодиодного табло, используемого в условиях обычной освещенности.

Выводы от сегментов выполнены в виде износостойких токопроводящих дорожек на стекле. Соединение выводов табло с элементами схемы управления осуществляется с помощью разъема.

Другим принципом, используемым для создания табло на жидких кристаллах, является эффект вращения плоскости поляризации поляризованного света слоем жидких кристаллов, исчезающий под дей­ствием электрического поля (твист-эффект). Индикаторы, работающие на этом принципе, получают, помещая капельку жидких кристаллов между двумя скрещенными поляроидными пластинами, которая растекается между ними в виде тонкой пленки. Сами скрещенные поляроиды имеют взаимно перпендикулярные плоскости поляризации света и поэтому являются совершенно непрозрачными. Но если между этими пластинами имеется слой неметаллических жидких кристаллов, которые п результате технологической обработки приобрели свойство вращения плоскости поляризации проходящего света на 90°, то вся эта оптическая система получается прозрачной (рис. 2).

При приложении электрического поля все молекулы жидких кристаллов ориентируются вдоль поля и эффект вращения плоскости поляризации исчезает. В результате через систему, показанную на рис. 2, пропускание света прекращается. Если возбуждается не весь слой жидких кристаллов, а определенные участки в виде символа или цифры, то изображение данного символа (цифры) будет темным в проходящем свете по сравнению с невозбужденной областью (фоном). Этот принцип получения индикации является более прогрессивным, так как даст значительный выигрыш в мощности потребления и позволяет получать более высокий контраст. В большинстве серийно выпускаемых типов жидкокристаллические индикаторы использован данный принцип.

Возбуждение ЖК слоя в индикаторах осуществляется переменным напряжением синусоидальной формы или формы типа меандр, с эффективным значением (в зависимости от типа) от 2,7 до 30 В и частотой 30-1000 Гц. Постоянная составляющая напряжения не допускается из-за появления электролитического эффекта, что ведёт к резкому сокращению срока службы приборов индикаторы. Основным параметром ИЖК, отражающим качество его работы, является контраст знака по отношению к фону К, который определяется как отношение интенсивностей света, выходящего из ИЖК, в исходном (невозбужденном) и возбужденном состояниях. Контраст измеряется с помощью специальной оптической системы на основе микроскопа с встроенным фотоэлектронным умножителем на выходе. Для устранения внешней засветки объектив микроскопа защищен зачерненным конусом, который направлен на измеряемый индицикатор. Плоскость индикат. расположена перпендикулярно оптической оси микроскопа и освещается специальной лампой подсветки, поток которой через конденсатор направлен к измеряемому образцу под углом 45°. С помощью микроамперметра фиксируют два значения тока ФЭУ: при неработающем индикаторе и при приложенном к сегментам управляющем напряжении. Контраст, %, вычисляется по формуле

К=(Iф -Iз)100/Iф,

где Iф - ток фона - фототок фотоэлектронного умножителя при неработающем индикаторе; I3 - ток знака - фототок фотоэлектронного умножителя при приложенном к сегментам номинальном управляющем напряжении (изображение знака темнее фона). Значение К современные серийные индикаторы имеют порядка 83-90 %. Реже контраст выражают в относительных единицах (отн. ед.): К=Iф/I3.

Чем выше внешняя освещенность, тем ярче изображение на индикаторе. Контраст от освещенности практически не зависит.

Основными параметрами жидкокристаллических цифро-знаковых индикаторов являются:

контраст знака по отношению к фону К-отношение разности коэффициента яркости фона и знака индикатора к коэффициенту яркости фона, выраженное в процентах;

ток потребления IПОТ - среднее значение переменного тока, протекающего через сегмент при приложении к нему номинального напряжения управления рабочей частоты;

напряжение управления Uупр - номинальное значение эффективного переменного напряжения, приложенного к сегментам индикат.;

рабочая частота напряжения управления fраб;

минимальное напряжение управления Uупр- минимальное значение эффективного переменного напряжения, приложенного к сегментам индикат., при котором обеспечивается заданный контраст знака по отношению к фону;

максимально допустимое напряжение управления Uупрmax- максимальное значение эффективного переменного напряжения, приложенного к сегментам индикат., при котором обеспечивается заданная надежность индикатора при длительной работе;

время реакции tреак - интервал времени при включении, в течение которого ток потребления увеличивается до 0,8 максимального значения;

время релаксации tрел - интервал времени при выключении, в течение которого ток потребления снижается до 0,2 максимального значения.

Важнейшей характеристикой цифро-знакового ИЖК как прибора отображения информации является зависимость контраста знака от напряжения управления. С увеличением напряжения контраст круто растет до порогового значения, после чего увеличение контраста с увеличением Uупр практически не происходит. Значение Uупрmin выбирается на пологом участке кривой вблизи порога. Отметим, что контраст знака индикатора является функцией эффективного значения Uупр и практически не зависит от его формы.

Жидкокристаллический индик. как элемент электрической цепи эквивалентен конденсатору. Вследствие этого вольт-амперная характеристика Iпот=f(Uупр) при номинальной частоте управляющего напряжения близка к линейной, а частотная характеристика Uпотр = ф(fраб) имеет вид монотонно возрастающей кривой. Постоянная составляющая управляющего напряжения не должна превышать 1 % эффективного значения Uупр.

Рис. 3. Временная диаграмма нарастания и спада тока потребления жидкокристаллического индикатора (б) при подаче управляющего переменного напряжения (а)

Важной особенностью ЖК индикатора является низкий ток потребления - единицы или сотни микроампер (в зависимости от принципа работы). В интервале рабочих температур ток потребления несколько увеличивается с ростом температуры. Жидкокристаллический индикат. имеет низкое быстродействие, связанное с инерционными процессами перестройки структур органических кристаллов. Быстродействие существенно зависит от температуры. В зоне температур, близких к нижнему пределу, быстродействие резко падает. Измерения временных параметров tpеак и tрел, приводимых в таблицах, производятся на уровне соответственно 0,8 и 0,2 установившегося значения, как показано на рис. 3. Проверку времени реакции и релаксации серийных приборов производят визуально по появлению и исчезновению (при прямом наблюдении) знаков при подаче на них прерывистого напряжения управления с длительностью воздействия 800 мс и длительностью паузы 800 мс.Такие индикаторы работают в весьма узком интервале температур. Подавляющее большинство жидкокристаллических индикаторов не работает при окружающей температуре ниже +1 °С, так как в этих условиях материал переходит в состояние полутвердого кристалла. При приближении к нижнему температурному пределу индикат. реагирует на приложение напряжения все медленнее и в конце концов полностью теряет работоспособность. Индикаторы восстанавливают свои характеристики после возвращения их из среды с низкой температурой в среду с температурой, соответствующей температуре рабочего диапазона. В связи с этим хранение индикаторов разрешается при температуре до -40 °С.

По числу разрядов в одном корпусе цифро-знаковые индикаторы делятся на 1-разрядные, 4-разрядные, 6-разрядные, 9-разрядные. Нумерация разрядов принята возрастающей слева направо.

Существуют также табло, отображающие различные символы, специальные знаки и надписи.

Цифро-знаковые табло изготавливаются в пластмассовых корпусах или из стекла с компаундным упрочнением по периметру с выводами под распайку или под разъем.

В процессе эксплуатации следует избегать попадания на контактную площадку влаги и пыли, вызывающих межэлектродные замыкания. Очищать поверхность индикатора рекомендуется чистым батистом, слегка смоченным этиловым спиртом.

Система обозначений жидкокристаллических индикаторов содержит несколько букв и цифр. Сочетание ИЖК означает: индикат. жидкокристаллический. Четвертый элемент обозначения: буква Ц означает- цифровой, а С - символьный. Пятый элемент - цифра, указывающая номер разработки. Цифра после дефиса указывает число разрядов индикатора, а число через косую дробную черту соответствует высоте в миллиметрах цифры (символа) в разряде.

Приборы, разработанные до введения описанной системы, обозначены иначе. Например, наименование ЦИЖ-5 расшифровывается следующим образом: цифровой индикатор жидкокристаллический, номер раз­работки 5, а ИЖК-2 - индикатор жидкокристаллический, номер разработки 2.

Использование жидкокристаллических индикаторов в радиоэлектронной

аппаратуре стимулируется рядом факторов: низкими токами потребления и напряжениями управления, совместимостью работы с интегральными микросхемами, низкой стоимостью.

Возможными областями их применения являются: индикаторные устройства измерительной аппаратуры, электронные часы и микрокалькуляторы, информационные панели и указатели. Весьма сложным аспектом применения жидкокристаллических приборов являются средства управления (особенно это относится к многоразрядным индикаторам). На рис. 4 показана схема возбуждения сегментов сигналом переменного напряжения. Устройство состоит из двух логических схем И с двумя входами DD2, DD3, инвертора DD1 и ключа-формирователя из транзисторе VT. На коллектор транзистора подается напряжение, равное двойной амплитуде номинального переменного напряжения возбуждения данного ЖК индикатора. С транзистора VT на сегмент индикатора снимается однополярное переменное напряжение прямоугольной формы амплитудой 40 В. Для уничтожения постоянной составляющей импульсного питающего напряжения (она недопустима из физических условий работы жидких кристаллов) к общему электроду прикладывается постоянное напряжение 20 В.

На вход DD2 подается напряжение возбуждения с частотой fв=30-50 Гц, а на вход DD3 - напряжение гашения с частотой fг = 10-40 кГц. При низком логическом уровне управляющего сигнала открывается DD2 и транзистор работает в импульсном режиме с частотой, соответствующей частоте возбуждения ЖК сегмента. Управляющий сигнал с высоким логическим уровнем, поступающий с дешифратора на управляющий вход, открывает DD3. В результате устройство формирует напряжение повышенной частоты, на которую жидкокристаллический сегмент не реагирует. С учетом того, что устройство управления должно быть соизмеримо по потребляемой мощности с жидкокристаллическим индикатором, все логические схемы выполнены на основе КМОП-структур.

Рис. 4. Схема возбуждения сегментов ЖК индикатора переменным напряжением различной частоты

Кроме описанного используется также другой тип устройства возбуждения жидкокристаллических индикаторов. Его схема показана на рис. 5. На входы логических схем И DD2 и DD3 от внешнего генератора подаются импульсные напряжения с частотой f=l5-25 Гц, сдвинутые по фазе относительно друг друга на 180град. В зависимости от уровня управляющего сигнала на сегмент индикатора через ключ-формирователь (транзистор VT1) прикладывается напряжение прямоугольной формы, прямое либо сдвинутое по фазе. На общий электрод индикатора через другой ключ-формирователь (транзистор VT2) постоянно подается сигнал одной фазы.

При совпадении фаз на электродах сегмента последний не возбуждается; при различии фаз происходит возбуждение сегмента. Отметим, что фазовый способ управления позволяет уменьшить напряжение питания индикатора в 2 раза.

При использовании многоразрядных индикаторов требуется большое число внешних соединений, необходимых для управления сегментов. Это заставляет прибегать к созданию мультиплексного управления. На рис. 6 показан принцип управления 4-разрядным цифровым индикатором с разделенными общими электродами для каждого разряда, который заключается в объединении идентичных сегментов по всем разрядам и последовательной адресации данных в соответствующие разряды. Процесс отображения 4-разрядного числа осуществляется по тактам В каждом такте переменное управляющее напряжение прикладывается к шине управления сегментов и к линии общего электрода того разряда, который возбуждается в данном такте. Благодаря большому времен» релаксации жидких кристаллов цифры разрядов в период между тактами возбуждения продолжают читаться без приложения напряжения.

Индикаторы и дисплеи - это устройства отображения буквенно-цифровой информации, а так же, различной графической символики. Одним из типов информационных устройств является OLED индикатор, органический светодиодный дисплей. Группа представителей такого класса от компании Winstar

обладают высокой передачей цвета, малым энергопотреблением, высокой контрастностью и большим углом обзора 180°. Область применения цветных дисплеев - МР3 плееры, автомагнитолы, сотовые телефоны, цифровые фотоаппараты. ЖК-дисплеи - дисплеи на основе жидких кристаллов. TFT панели от компании NEC оснащены светодиодной подсветкой, высокой яркостью и контрастностью, минимальным временем отклика, большим углом обзора, просты в применении, обладают качеством и надежностью конструкции. ЖК-индикаторы графические являются устройствами вывода информации на жидкокристаллический дисплей (модуль). Линейка изделий производителей МЭЛТ и Winstar оснащены встроенными контроллерами с низким энергопотреблением, светодиодной подсветкой, малым напряжением питания, 3В…5В, что позволяет применять приборы в различной электронике с автономным питанием. При покупке следует учитывать габариты модуля, тип контроллера, количество строк и точек в строке, и напряжение питания.

Цифровые сегментные индикаторы предназначены для отображения вывода буквенно-цифровой информации в электронных приборах. Модели изделий известных производителей Betlux и Kingbright применяются в широком спектре цифровой электроники. Наиболее популярны и востребованы семисегментные индикаторы, которые, в свою очередь, имеют разные технические параметры, что следует учитывать при подборе компонента. Схема включения на плюсовую шину с общим катодом или анодом, количество разрядов (1.2, 3.4, 5), цвет свечения (желтый, зеленый, красный, синий). Особенность 14-и и 16-и сегментных индикаторов - установка компонентов в аппаратуры для вывода необходимой дополнительной буквенной информации.

ЖК-индикаторы знакосинтезирующие - буквенно-цифровые модули, в составе которых находятся контроллеры и жидкокристаллические дисплеи. Особенности модулей компаний Data Vision и Vinstar является встроенный контроллер с прошивкой двух языков (русский/английский), малое энергопотребление, наличие светодиодной подсветки. Модули фирмы МЭЛТ имеют программно-переключаемые страницы знакогенератора с дополнительным алфавитом (русский, белорусский, украинский, казахский и английский). Изделия управляются по параллельному интерфейсу с записью данных в ОЗУ. Выбор необходимого индикатора производится по его параметрам.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Волгоград, Воронеж, Екатеринбург, Ижевск, Казань, Калуга, Краснодар, Красноярск, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Пермь, Ростов-на-Дону, Рязань, Самара, Тверь, Тула, Тюмень, Уфа, Челябинск. Доставка заказа почтой или через салоны «Евросеть» в следующие города: Тольятти, Саратов, Барнаул, Ульяновск, Тюмень, Иркутск, Ярославль, Оренбург, Томск, Кемерово, Хабаровск, Владивосток и др.

Товары из группы «Индикаторы и дисплеи» вы можете купить оптом и в розницу.

Название : Справочник - Знакосинтезирующие индикаторы.

Приведены подробные справочные данные о серийно выпускаемых типах индикаторов: электролюминесцснтных, вакуумных люминесцентных, вакуумных накаливаемых, полупроводниковых, газоразрядных, жидкокристаллических. Кратко описаны физические процессы, принципы конструирования, параметры и характеристики, области применения. Рассмотрены схемы управления.

Содержание.

Предисловие редактора. 8
Введение. 10
ЧАСТЬ I. ОБЩИЕ СВЕДЕНИЯ
1. Классификация и условные обозначения знакосинтезирующих индикаторов.
1.1. Классификация. 13
1 2. Условные обозначения. 16
1.3. Основные светотехнические параметры знакосинтезирующих индикаторов.
2. Вакуумные люминесцентные и никаливаемые знакосинтезирующие индикаторы. 27
2.1. Физический принцип действия вакуумных люминесцентных индикаторов.
2.2. Конструктивные особенности вакуумных люминесцентных индикаторов. 28
2.3. Принцип действия и управления вакуумных люминесцентных индикаторов.
2.4. Типы вакуумных люминесцентных индикаторов и их основные параметры.
2.5. Области применения вакуумных люминесцентных индикаторов. 32
2.6. Вакуумные накаливаемые знакосинтезирующие индикаторы. 33
3. Газоразрядные знакосинтезирующие индикаторы. 35
3.1. Физический принцип действия. 35
3.2. Конструктивные особенности. 43
3.3. Принцип управления. 45
3.4. Основные параметры. 49
3.5. Области применения и перспективы развития. 49
4. Жидкокристаллические знакосинтезирующие индикаторы. 50
4.1 Электрооптические эффекты в жидких кристаллах, используемые в индикаторах. 50
4.2. Особенности конструкции жидкокристаллических индикаторов. 55
4.3. Принципы управления. 57
5. Полупроводниковые знакосинтезирующие индикаторы. 60
5.1. Физический принцип действия. 60
5.2. Основные материалы. 62
5.3. Конструктивные особенности. 64
5.4. Управление индикаторами. 65
5.5. Перспективы развития. 68
6. Электролюминесцентные знакоситезирующие индикаторы. 69
6.1. Физический принцип действия. 69
6.2. Конструктивные особенности. 71
6.3. Типы электролюминесцентных индикаторов и их основные параметры. 73
6.4. Области применения. 74
7. Методика оценки эффективности применения знакосинтезирующих индикаторов в средствах отображения информации. 76
7.1. Основы методики. 76
7.2. Алгоритмы оценки эффективности применения знакосинтезирующих индикаторов в средствах отображения информации. 83
8. Рекомендации по применению и эксплуатации. 85
8.1. Выбор знакосинтезирующих индикаторов. 85
8.2. Эксплуатация знакосинтезирующих индикаторов. 135
ЧАСТЬ II. ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ ЗНАКОСИНТЕЗИРУЮЩИХ ИНДИКАТОРОВ И СХЕМ УПРАВЛЕНИЯ ИМИ.
Общие сведения. 137
Условные обозначения параметров. 137
Единичные знакосинтезирующие индикаторы. 140
Вакуумные люминесцентные знакосинтезирующие индикаторы. 140
Газоразрядные знакосинтезирующие индикаторы. 152
Полупроводниковые знакосинтезирующие индикаторы. 156
Электролюминесцентные знакосинтезирующие индикаторы. 175
Цифровые знакосинтезирующие индикаторы. 179
Цифровые одноразрядные знакосинтезирующие индикаторы. 179
Вакуумные люминесцентные знакосинтезирующие индикаторы. 179
Вакуумные накаливаемые знакосинтезирующие индикаторы. 197
Газоразрядные знакосинтезирующие индикаторы. 210
Жидкокристаллические знакосинтезирующие индикаторы. 213
Полупроводниковые знакосинтезирующие индикаторы. 215
Электролюминесцентные знакосинтезирующие индикаторы. 276
Цифровые многоразрядные знакосинтезирующие индикаторы. 278
Вакуумные люминесцентные знакосинтезирующие индикаторы. 278
Газоразрядные знакосинтезирующие индикаторы. 312
Жидкокристаллические знакосинтезирующие индикаторы. 317
Полупроводниковые знакосинтезирующие индикаторы. 351
Буквенно-цифровые знакосинтезирующие индикаторы. 355
Вакуумные люминесцентные одноразрядные знакосинтезирующие индикаторы.
Газоразрядные одноразрядные знакосинтезирующие индикаторы. 382
Жидкокристаллические одноразрядные знакосинтезирующие индикаторы. 388
Полупроводниковые одноразрядные знакосинтезирующие индикаторы. 390
Электролюминесцентные одноразрядные знакосинтезирующие индикаторы. 407
Газоразрядные многоразрядные знакосинтезирующие индикаторы. 412
Шкальные знакосинтезирующие индикаторы. 425
Вакуумные люминесцентные знакосинтезирующие индикаторы. 425
Газоразрядные знакосинтезирующие индикаторы. 428
Полупроводниковые знакосинтезирующие индикаторы. 435
Электролюминесцентные знакосинтезирующие индикаторы. 56
Мнемонические знакосинтезирующие индикаторы. 459
Вакуумные люминесцентные знакосинтезирующие индикаторы. 459
Жидкокристаллические знакосинтезирующие индикаторы. 463
Электролюминесцентные знакосинтезирующие индикаторы. 479
Графические знакосинтезирующие индикаторы. 488
Вакуумные люминесцентные знакосинтезирующие индикаторы. 488
Газоразрядные знакосинтезирующие индикаторы. 497
Полупроводниковые знакосинтезирующие индикаторы. 543
Электролюминесцентные знакоснинтезирующие индикаторы. 554
Интегральные схемы управления знакосинтезирующими индикаторами. 560
Список литературы.

Классификация знакосинтезирующих индикаторов .

В настоящее время принята классификация ЗСИ по следующим признакам: виду отображаемой информации; виду элементов отображения информации и способу формирования информационного поля; расстоянию наблюдения и числу наблюдателей; помехоустойчивости; привычности начертания знаков; числу знакомест; способу преобразования энергии; физическому принципу, положенному в основу работы; конструктивному оформлению; материалу корпуса; значению питающего напряжения; виду питающего напряжения (тока); числу элементов; способу управления.

По виду информации, для отображения которой ЗСИ предназначены, они делятся на: единичные - для отображения информации в виде точки, круга, квадрата, прямоугольника или другой простой геометрической фигуры; цифровые - для отображения информации в виде цифр; буквенно-цифровые - для отображения информации в виде букв различных алфавитов, цифр, знаков препинания, математических и других специальных знаков и символов; шкальные - для отображения информации в виде уровней или значений величин, дискретных, аналоговых и дискретно-аналоговых шкал или их частей как оцифрованных, так и неоцифрованных; мнемонические - для отображения информации в виде мнемосхем или их частей; графические - для отображения информации в виде букв различных алфавитов, цифр, знаков препинания, математических и других специальных знаков и символов, графиков и другой сложной информации, в том числе и телевизионной.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Справочник - Знакосинтезирующие индикаторы - Вуколов Н.И., Михайлов А.Н. - fileskachat.com, быстрое и бесплатное скачивание.

Жидкокристаллические индикаторы (ЖКИ) основаны на использовании так называемых жидких кристаллов (ЖК), пред­ставляющих собой некоторые органиче­ские жидкости с упорядоченным рас­положением молекул, характерным для кристаллов. Жидкие кристаллы прозрачны для световых лучей, но под действием электрического поля напряженностью 2 - 5 кВ/см структура их нарушается, молекулы располагаются беспорядочно и жидкость становится непрозрачной.

Эти индикаторы могут иметь различ­ные конструкции и работать либо в проходящем свете, созданном каким-либо специальным источником, либо в свете любого источника (искусствен­ного или естественного), отражающем­ся в индикаторе.

На рис. 40 представлен ЖКИ, работающий на отражение. Индикаторы такого типа применяются в наручных электронных часах, микрокалькуляторах и других устройствах. Между двумя стеклянными пластинками 1 и 3, склеен­ными с помощью полимерной смолы 2, находится слой жидкого кристалла 4 толщиной 10 - 20 мкм. Пластинка 3 покрыта сплошным проводящим слоем (электрод 5) с зеркальной поверхностью. На пластинку 1 нанесены прозрачные слои - электроды А, Б, В, от которых сделаны выводы, не показанные на рисун­ке. Эти электроды имеют форму цифр, или букв, или сегментов для синтези­рования различных знаков.

Рисунок 40 – Жидкокристаллический индикатор, работающий на отражение

Если на зна­ковые электроды напряжение не подано, то ЖК прозрачен, световые лучи внешнего естественного освещения про­ходят через него, отражаются от элект­рода 5, выходят обратно и никаких знаков не видно. Но если на какой-то электрод, например А, подано напряже­ние, то ЖК под этим электродом становится непрозрачным, лучи света не проходят через эту часть жидкости (6), и тогда на светлом фоне виден темный знак.

Жидкокристаллические индикаторы весьма экономичны и долговечны. Для управления ЖКИ применяются довольно сложные устройства, обычно на основе интег­ральных микросхем. Находят широкое применение в качестве дисплеев переносных и стационарных электронных устройств – средств связи, измерительной аппаратуры, компьютерной технике. Кроме того, на сегодняшний день являются основным типом мониторов и телевизионных приемников.

Эффективное и надежное использование многих систем промыш­ленной электроники невозможно без участия человека-оператора в управлении, который должен получать необходимые сведения о рабо­те системы и контролируемых параметрах. Этой цели служат устрой­ства, предназначенные для преобразования различных данных в види­мое изображение и называемые устройствами отображения информации.

Устройства отображения информации могут решать простейшие, но весьма важные задачи контроля состояния системы: «Работает», «Не работает», «Включено», «Выключено», «Стоп» и т. д. В более слож­ных случаях на них возлагается функция отображения цифровой, текстовой и графической информа­ции, характеризующей технологический процесс, работу производ­ственного объекта, и целой системы.

В статье подробно разбирается принцип действия и конструктивные модификации жидкокристаллических индикаторов, а также способы управления ЖКИ.

Принцип действия и конструктивные модификации жидкокристаллических индикаторов

Жидкокристаллические индикаторы (ЖКИ) являются пассивными индикаторами, преобразующими падающий на них свет.Они обладают рядом достоинств, к числу которых относятся:малая потребляемая мощность (для ЖКИ на основе твист-эффекта удельная мощность потребления несколько единиц мкВт/см 2); низкие рабочие напряжения (1,5...5 В) и хорошая совместимостьКМОП-микросхемам; удобное конструктивное исполнение - плоская форма экрана и ограниченная толщина индикатора (до 0,6 мм); возможность эффективной индикации в условиях сильной внешней засветки; большая долговечность (около 10-12 лет непрерывной работы).

Основные недостатки - сравнительно низкое быстродействие, ограниченный угол обзора и необходимость внешнего освещения. Жидкие кристаллы (ЖК) называют также анизотропными жидкостями, электрические и оптические свойства которых зависят от направления их наблюдения. Плотность ЖК близка к плотности воды и незначительно отличается от единицы. Жидкие кристаллы - диамагнитный материал; ЖК выталкиваются из магнитного поля; ЖК относятся к диэлектрикам; удельное сопротивление составляет 10 6 ... 10 10 Ом · см и зависит от наличия и концентрации проводящих примесей. Теплопроводность ЖК в направлении вдоль молекул отличается от теплопроводности в поперечном по отношению к молекулам направлении. Вследствие анизотропии электрических и оптических свойств в ЖК наблюдаются электрооптические эффекты, связанные с движением вещества - динамическое рассеяние (ДР), а также с поворотом молекул в электрическом поле - твист-эффект (ТЭ) и эффект гость-хозяин (Г - X).

Основой простейшего индикаторного элемента с использованием ЖК являются две стеклянные пластины. Вне зависимости от используемого электрооптического эффекта ЖКИ разделяются на два класса: индикаторы, работающие на просвет, и индикаторы, работающие на отражение. У первых обе стеклянные пластины прозрачны; электродами служат прозрачные электропроводящие пленки (например, двуокись олова), между которыми помещено ЖК вещество. За индикатором помещается источник света. Цвет и яркость индикатора определяются цветом и яркостью источника света. У вторых задний электрод изготовлен в виде зеркала; на соответствующую пластину наносится прозрачная, проводящая, отражающая свет пленка (например, пленка алюминия, никеля, золота). Такой индикатор использует внешнее отражающее освещение (специальная подсветка отсутствует).Конфигурация электродов индикатора определяется либо формой исходных стеклянных пластин, либо технологией металлизации. Как правило, пластины и электроды плоские, но в ряде приборов внутренняя поверхность задней пластины имеет сложную форму, образующую ряд оптических элементов, обеспечивающих отражение излучения в направлении источника света. В ЖКИ, работающем на основе ДР, при приложении электрического поля напряженностью около 5 кВ/см (примерно 30 В-к пленке ЖК толщиной 0,25- мм) молекулы переориентируются, возникают турбулентность и сильное оптическое рассеяние. Материал, прозрачный в отсутствие поля, становится непрозрачным. В таком ЖКИ, работающем на отражение, задний электрод представляет собой зеркало, на котором при подаче напряжения появляются участки молочно-белого цвета, форма которых соответствует конфигурации электродов. Для повышения однородности и четкости изображения, а также срока службы на поверхность проводящих слоев наносится тонкое химически инертное по отношению к ЖК оптически прозрачное покрытие. Материалом таких покрытий служат винилацетатные смолы, смолы на основе этилена, эпоксидные компаунды и т. п. Заднюю стеклянную пластину индикатора чернят, тогда на черном фоне возникает белое изображение. В ЖКИ с использованием ТЭ, работающем на отражение, стеклянные пластины расположены между двумя скрещенными поляризаторами, за задним из которых помещен диффузный отражатель. Поверхности пластин, обращенные к ЖК, полируются, чтобы молекулы ЖК в слоях, прилегающих к ним, ориентировались во взаимно перпендикулярных направлениях; в промежуточных слоях осуществляется постепенный поворот направлений ориентации. В отсутствие электрического поля свет в индикаторе следует за вращением молекул и на выходе индикатора плоскость его поляризации оказывается повернутой на 90°; свет проходит через индикатор. При наличии электрического поля ориентация молекул изменяется, плоскость поляризации света, проходящего через индикатор, не вращается и свет не проходит через индикатор. Так как отражатель диффузный, на слабо окрашенном сером фоне отображаются темные знаки. В ЖКИ на основе ТЭ, работающем на просвет, поляризаторы устанавливают так, чтобы их плоскости поляризации были параллельны друг другу. Индикатор не пропускает свет в отсутствие электрического поля и пропускаетпри подаче напряжения.

Опыт практического применения ЖКИ на эффекте ДР и ТЭ выявил достоинства индикаторов этих типов, показал их конкурентоспособность с другими классами индикаторов. К числу достоинств таких ЖКИ относится высокая эффективность.

Индикаторы на эффекте ДР характеризуются уровнем потребляемой мощности 5...10 мкВт/см 2 для постоянного тока (0,5 ...1,0 мкА/см 2) и 50...200 мкВт/см 2 для переменного тока (2... 10 мкА/см 2). Для индикаторов на основе ТЭ удельная потребляемая мощность составляет не более 20 мкВт/см 2 (менее 2 мкА/см 2). По экономичности ЖКИ намного превосходят современные светоизлучающие диоды. К достоинствам ЖКИ на эффекте ДР и ТЭ можно отнести способность сохранять и увеличивать контраст изображения при повышении уровня внешней освещенности, прямую совместимость с КМОП-микросхемами, обеспечивающую возможность низковольтного управления ЖКИ-рабочее напряжение ЖКИ на эффекте ДР не превышает 20, а на ТЭ - 5 В. Они имеют удобное конструктивное оформление. Индикаторы плоские; толщина индикатора практически определяется толщиной двух стекол и может составлять 0,6 ...0,8 мм. Велика их долговечность - при эксплуатации на переменном токе - более 40 тыс. ч. Вместе с тем ЖКИ характеризуются сравнительно низким быстродействием (десятки миллисекунд, особенно при пониженной температуре) и явно выраженной зависимостью параметров от температуры окружающей среды.Индикаторы на эффекте ДР и ТЭ преимущественно применяются там, где экономичность играет решающую роль: в электронных наручных часах,микрокалькуляторах с автономным питанием, портативных многофункциональных измерительных приборах, индикаторах для переносных радиоприемников, магнитофонов, автомобильных индикаторных устройствах и т. п.

В индикаторах на эффекте Г-Х тонкий слой ЖК-«хозяина» взаимодействует с молекулами «гостя». Слой ЖК-хозяина за счет поглощения световой энергии при отсутствии электрического поля приобретает характерную для красителя (гостя) окраску; под воздействием электрического поля он обесцвечивается. Но существуют также вещества гостя и хозяина, в которых окрашивание происходит под воздействием электрического поля. Цветовые различия в индикаторах на эффекте Г-Х хорошо воспринимаются в условиях высокой освещенности даже при небольшом яркостном контрасте.
Жидкокристаллические индикаторы, предназначенные для работы в условиях низкой освещенности (менее 35 кд/м 2) работают с подсветкой. Для подсветки используются лампы накаливания со средней мощностью примерно 0,5 Вт для знака высотой 2,5 см. Подсветка может быть создана различными способами, например с использованием лампы накаливания, свет которой проходит через жалюзи, что обеспечивает удобство наблюдения изображения в направлении, перпендикулярном поверхности индикации. Для увеличения угла обзора можно использовать две лампы накаливания. Сверхминиатюрную лампу накаливания можно встроить непосредственно между пластинами ЖК. Для повышения механической прочности ЖКИ изготовляют с металлическими крышками, которые закрывают заднюю стеклянную пластину, слой ЖК и герметически соединяются с лицевой пластиной. Такое конструктивное решение повышает влагостойкость индикатора. Для этого же ЖКИ размещают в пластмассовых корпусах.

Управление жидкокристаллическими индикаторами

Способы управления индикаторными панелями (ИП) на основе ЖК материалов определяются особенностями их физических свойств. Так, долговечность ЖКИ, работающего на постоянном токе, примерно на порядок ниже, чем при использовании переменного напряжения. Снижение долговечности в варианте постоянного тока обусловлено миграцией примесей к отражающему электроду под воздействием постоянной составляющей управляющего сигнала, в результате-падает контрастность и растет напряжение возбуждения. Предпочтительным оказывается возбуждение ЖКИ переменным током. в этом случае на электроды передней и задней пластин подаются импульсы напряжения прямоугольной формы одинаковой полярности, но сдвинутые по фазе так, что управляющее напряжение представляет собой биполярный сигнал, не имеющий постоянной составляющей. Для ЖК материалов характерна заметная инерционность при возбуждении и снятии возбуждения. Ячейка включается с запаздыванием на 10...20мс (время реакции) по отношению к фронту возбуждающего импульса, а время выключения (время релаксации) примерно на порядок превышает время включения. Известны различные способы уменьшения времени выключения ЖК ячеек. Можно после снятия напряжения возбуждения через несколько миллисекунд подать на ячейку короткий импульс относительно большой амплитуды. При этом ускоряется процесс нейтрализации ионов, накопленных в ЖК за время действия управляющего импульса, дипольные моменты молекул ЖК ориентируются параллельно вектору напряженности электрического поля. И рассеяние света быстро прекращается. Несмотря на простоту, этот способ неудобен, так как требует использования устройства генерирования импульсов высокого напряжения. При возбуждении ячейки переменным напряжением после прекращения возбуждающего напряжения можно подать сигнал частотой 10...40 кГц в течение нескольких миллисекунд; за это время ячейка гаснет. Время выключения (релаксации) сокращается до 5... 10 мс. Возбуждение ЖКИ может осуществляться частотным или фазовым способом. Частотный способ иллюстрируется схемой, показанной на рис. 1.

Она состоит из инвертора, двух вентилей (1 и 2) с двумя входами и транзисторного ключа. К коллектору транзистора приложено постоянное напряжение, равное удвоенной амплитуде переменного напряжения возбуждения (40 В). На вход одного из вентилей подано переменное напряжение частоты 30...500 Гц, на вход другого-напряжение частоты 10...40 кГц. С коллектора транзистора на сегмент индикатора подаются импульсы прямоугольной формы соответствующей частоты амплитудой 40 В. На общий электрод индикатора подается постоянное напряжение для компенсации постоянной составляющей возбуждающего сигнала. При подаче управляющего сигнала, соответствующего режиму включения сегмента индикатора на выходе вентиля 1 формируется положительный сигнал, переключающий транзистор с частотой возбуждения 30... 500 Гц. Сигнал на выходе вентиля 2 в это время отсутствует. При изменении полярности управляющего сигнала на выходе вентиля 2 возникает сигнал гашения сегмента с частотой 10...400 кГц. Устройство управления (без формирователей) удобно выполнять на комплементарных МДП-схемах серии К176.


Фазовый метод (рис. 2) предусматривает подачу на входы вентилей импульсов напряжения с частотой 15... 25 Гц, сдвинутых по фазе относительно друг друга на 180°. В зависимости от уровня управляющего сигнала на сег-мент с выхода формирователя подаются напряжения различных фаз. Сегмент не возбуждается при совпадении фаз на электродах ЖКИ; возбуждение происходит при различных фазах. По сравнению с частотным фазовый метод позволяет вдвое снизить напряжение питания, однако при этом не удается сократить время включения ЖКИ. При использовании фазового метода информацию можно выводить до 5 раз в секунду, это достаточно для цифровых приборов, калькуляторов, электронных часов. При более высоких частотах смены информации, например при динамическом принципе индикации, целесообразно использовать частотный метод управления. Управление многоразрядными ЖКИ может осуществляться в статическом или динамическом режиме. Структурная схема управления индикатором в статическом режиме показана на рис. 3. Каждое знакоместо индикатора З 1 -З n подключено к регистру оперативной памяти Роп.

Каждая кодовая комбинация регистра преобразуется в сегментный код индикатора дешифраторами управления ДУ, с выхода которых информация в коде индикатора через ключи блока формирователей БФ используется для коммутации питания сегментов индикатора. Для этого устройства управления характерно полное использование контраста знакоместа, так как время возбуждения свечения равно длительности цикла индикации. Недостаток схемы -необходимость иметь для каждого знакоместа свой дешифратор и формирователь для каждого сегмента. Число внутрисхемных соединений велико, оно равно произведению числа выходов на один цифровой разряд на число цифровых разрядов. При динамическом управлении (рис.4) пространственно разделенные разряды работают последовательно во времени.

Возможны два типа управления - с последовательной выборкой знакоместа и с последовательной выборкой цифры. В первом случае распределитель знакомест Рзм последовательно через формирователи ф 1 -ф n возбуждает знакоместа десятичных разрядов З 1 -З n , на которые синхронно с помощью коммутатора К, управляемого Рзм и дешифратором цифр ДШц, с регистра памяти подается информация, подлежащая индикации. Такт распределителя Тр=n tр, где Тр-время возбуждения одного разряда, a n-число разрядов. Частота распределителя fp=1/Tp=1/(n tp) должна быть выше или равной некоторой критической частоты fкр, при которой мерцание разрядов незаметно, т. е. fp= nf кp. При последовательной выборке, цифры дешифратор цифр ДШц последовательно и синхронно с генератором фазоимпульсных констант ГФК синтезирует цифры от 0 до 9 параллельно на всех знакоместах З 1 -З n . Информация от регистра памяти в фазоимпульсном десятичном коде подается через формирователи ф 1 -ф n на общий электрод знакомест. Цифра высвечивается момент совпадения информации регистра с синтезируемой цифрой. Устройство не имеет ограничений по числу разрядов, однако работает при постоянной скважности 10 (десять цифр 0 ... 9), что ограничивает возможности ее использования применительно к ЖКИ с малым контрастом. Основные параметры ЖКИ: контрастность К и пропускание, пороговое напряжение Uпop, управляющее напряжение Uynp, время включения (реакция) Твкл, время выключения (релаксации) Твыкл. (Отношение интенсивности света, выходящего из ячейки называется пропусканием, если наблюдение ведется в направлении навстречу входящему лучу и контрастностью во всех других случаях.) Для ДР ячеек контраст составляет от 15:1 до 100:1, пропускание-минумум 20:1. Для ячеек на основе ТЭ контрастность и пропускание-от 40:1 до 100:1.
Значения порогового и управляющего напряжений определяются по коэффициенту рассеяния света в ячейке Кр.

Пороговое напряжение Unop соответствует значению Кр==0,05. Управляющее напряжение Uynp-значению Кр=0,5. Значение Unop для индикатора, использующего эффект ДР, увеличивается на низких и высоких частотах (индикатор становится менее эффективным). Индикаторы на основе ТЭ обычно используют на частотах 1... 10 кГц. В справочных данных индикаторов указывают рекомендуемую частоту управляющего напряжения.
Время включения Твкл определяется как время, в течение которого контрастность достигает 90% установившегося значения, а время выключения Твыкл-как время уменьшения контрастности от 90 до 10% установившегося значения.

Долговечность жидкокристаллических индикаторов

В процессе эксплуатации ЖКИ изменяется внешний вид информационных полей, что проявляется как ухудшение и исчезновение контраста между активными и пассивными зонами, увеличивается время реакции. Изменения внешнего вида и времени реакции является следствием электрохимических явлений на границе жидкокристаллическое вещество (ЖКВ)-поверхность подложки. Скорость деградационных процессов в основном определяется постоянной составляющей напряжения возбуждения, предельно допустимое значение которого указывается в справочных данных. Наличие постоянной составляющей приводит к электролизу ЖКВ, в результате которого возникает газовыделение в объеме ЖКВ, образуются пузырьки газов, визуально воспринимаемые как черные точки. Электроды индикатора (проводящие пленки) теряют свою прозрачность, и сегменты становятся видимыми в отсутствие напряжения возбуждения. В результате старения нарушается ориентация молекул ЖКВ и растет ток, потребляемый индикатором. В процессе эксплуатации ЖКВ потребляемый ток может расти за счет проникновения влаги через слой герметика. Влага разрушает ЖКВ. Особенно опасно сочетание влаги с воздействием высокой температуры. При эксплуатации ЖКИ в условиях низкой температуры отдельные компоненты ЖКВ могут кристаллизоваться. Чередование замораживания и размораживания ЖКВ может привести к образованию воздушных пузырьков, которые выглядят как черные точки.