Что такое порода коллектор. Классификации пород-коллекторов

КОЛЛЕКТОРЫ НЕФТИ И ГАЗА (от cp.-век. лат. соllector — собиратель * а. oil and gas reservoirs; н. Erdol-Erd gasspeichergesteine, Erdol- und Gasspeicher; ф. roches-reservoirs de petrole et de gaz, roches-magasins de petrole et de gaz; и. rocas reservorios de gas у petroleo) — горные породы , способные вмещать жидкие, газообразные углеводороды и отдавать их в процессе разработки . Критериями принадлежности пород к коллекторам и служат величины проницаемости и ёмкости, обусловленные развитием , трещиноватости , кавернозности. Величина полезной для нефти и газа ёмкости зависит от содержания остаточной водонефтенасыщенности. Нижние пределы проницаемости и полезной ёмкости определяют промышленную оценку пластов , она зависит от состава флюида и типа коллектора.

Долевое участие пор, каверн и трещин в фильтрации и ёмкости определяет тип коллектора нефти и газа: поровый, трещинный или смешанный. Коллекторами являются породы различного вещественного состава и генезиса: , глинисто-кремнисто-битуминозные, и другие.

Коллекторские свойства терригенных пород зависят от гранулометрического состава , сортированности, окатанности и упаковки обломочных зёрен скелета, количества, состава и типа цемента. Эти параметры обусловливают геометрию порового пространства, определяют величины эффективной пористости, проницаемости, принадлежность пород к различным классам порового типа коллекторов. Минеральный состав глинистой примеси, характер распределения и количество её влияют на фильтрационную способность терригенных пород; увеличение глинистости сопровождается снижением проницаемости.

Коллекторские свойства карбонатных пород определяются первичными условиями седиментации , интенсивностью и направленностью постседиментационных преобразований, за счёт влияния которых развиваются поры, каверны, трещины и крупные полости выщелачивания . Особенности карбонатных пород — ранняя литификация , избирательная растворимость и выщелачивание, склонность к трещинообразованию обусловили большое разнообразие морфологии и генезиса пустот; они проявились в развитии широкого спектра типов коллекторов нефти и газа. Наиболее значительные запасы углеводородов сосредоточены в каверново-поровом и поровом типах.

Вулканогенные и вулканогенно-осадочные коллекторы нефти и газа отличаются характером пустотного пространства, большой ролью трещиноватости, резкой изменчивостью свойств в пределах месторождения. Особенность коллекторов заключается в несоответствии между сравнительно низкими величинами ёмкости, проницаемости и высокими дебитами скважин, вскрывающих залежи в этих породах. Наиболее часто встречаются трещинный и порово-трещинный типы коллекторов.

Глинисто-кремнисто-битуминозные породы отличаются значительной изменчивостью состава, неодинаковой обогащённостью органическим веществом; микрослоистость, развитие субкапиллярных пор и микротрещиноватость обусловливают относительно низкие фильтрационно-ёмкостные свойства. В некоторых разностях пористость достигает 15% при проницаемости в доли миллидарси. Преобладают трещинные и порово-трещинные коллекторы нефти и газа. Промышленная нефтеносность глинисто-кремнисто-битуминозных пород установлена в баженовской (Западная Сибирь) и пиленгской (Сахалин) свитах.

Наиболее значительные запасы углеводородов приурочены к песчаным и карбонатным рифогенным образованиям. Выявление коллекторов нефти и газа проводится комплексом геофизических исследований скважин и анализом лабораторных данных с учётом всей геологической информации по месторождению. При изучении карбонатных коллекторов нефти и газа, кроме традиционных литологических и промыслово-геофизических методов, используют фотокаротаж, ультразвуковой метод, капиллярного насыщения пород люминофорами и другие методы.

Породы-коллекторы

Основные параметры коллекторов

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их в промышленных количествах при разработке, называются коллекторами. Большинство пород-коллекторов имеют осадочное происхождение. Коллекторами нефти и газа являются терригенные (песчаники, алевролиты и некоторые глинистые породы), карбонатные (известняки, доломиты), кремнистые (радиоляриты, спонголиты) породы. В редких случаях коллекторами могут служить изверженные и метаморфические породы. Характер пустотного пространства в породах определяется текстурными особенностями породы, размерами и формой минеральных зерен, составом цемента, способностью пород к трещиноватости.

Основными параметрами коллекторов является пористость и проницаемость.

Пористостью называется доля пустотного пространства в общем объеме породы. Величина пористости может быть выражена в процентах или долях единицы.

Различают общую, открытую и эффективную пористость. Общая (полная, абсолютная) пористость - это объем всех пор в породе.

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость - объем только тех пор, которые связаны, сообщаются между собой.

В нефтяной геологии наряду с понятиями общей и открытой пористости существует понятие эффективной пористости, которая определяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры.

Другим важным параметром, характеризующим фильтрационные свойства пород-коллекторов, является проницаемость - свойство пород пропускать сквозь себя жидкости и газы. Проницаемость выражается в долях квадратного метра. Обычно проницаемость, измеренная параллельно слоистости, выше проницаемости, определенной перпендикулярно к напластованию.

Различают несколько видов проницаемости: абсолютную, фазовую (эффективную) и относительную .

Абсолютная проницаемость - проницаемость, измеренная в сухой породе при пропускании через неё сухого инертного газа (азота, гелия); часто она измеряется по воздуху.

Фазовая (эффективная) проницаемость - способность породы пропускать через себя один флюид в присутствии других; для отдельных флюидов зависит от их количественного соотношения. Особенно это заметно при разработке месторождения. При откачке и уменьшении количества нефти в пласте ее фазовая проницаемость постепенно падает.

Относительная проницаемость - отношение величины эффективной проницаемости данного флюида к величине проницаемости при 100 % насыщении породы данным флюидом. Она непрерывно меняется при эксплуатации залежи, т. к. меняется соотношение флюидов. Относительная проницаемость породы для любого флюида возрастает с увеличением ее насыщенности этим флюидом.

Пластовые флюиды - нефть, газ, вода - аккумулируются в пустотном пространстве породы-коллектора, представленном порами, кавернами и трещинами. По преобладающему виду пустот породы-коллекторы делятся на поровые, кавернозные, трещинные и биопустотные .

Поровыми (гранулярными) являются в основном песчаноалевритовые породы и некоторые разности карбонатных - оолитовые, обломочные известняки. Пустоты коллекторов представлены порами, размеры их не превышают 1 мм (рис. 89).

Рис. 89. Поровые коннекторы

Трещинными коллекторами могут быть осадочные породы, изверженные и метаморфические. Трещины определяют главным образом проницаемость этих образований. В качестве трещинных коллекторов среди осадочных пород чаще всего выступают карбонатные, но бывают и песчаноалевритовые и даже глинистые, которые ранее могли являться и нефтепроизводящими (рис. 90).

Рис. 90. Трещинные коллекторы

Кавернозные коллекторы чаще всего связаны с зонами выщелачивания с образованием пустот (каверн) в карбонатных толщах. Размеры каверн превышают 1 мм. Пустотное пространство образуется также при метасомагическом замещении кальцита доломитом (рис. 91).

Рис. 91. Кавернозные коллекторы

Биопустотные коллекторы связаны с органогенными карбонатными и кремнистыми породами, пустоты носят внутрискелетный и межскелетный характер (рис. 92).

По времени формирования все виды пустот могут быть первичные, образовавшиеся вместе с породой, и вторичные, образовавшиеся уже в готовой породе. Поры чаще бывают первичные, а каверны и трещины - вторичные. В карбонатных породах могут существовать еще реликтовые пустоты, например, пустоты раковин.

Рис. 92. Биопустотные коллекторы

Влияние постседиментационных процессов на изменение пустотного пространства

После завершения седиментации пористость образовавшегося песчаного осадка называется гипергенно-седиментационной. Последующие процессы диагенеза и катагенеза (уплотнение, цементация, регенерация) способствуют уменьшению, сокращению свободного порового пространства (рис. 93).

Рис. 93. Сокращение норового пространства в песчаниках за счет вторичных процессов. Шлифы

Наряду с уменьшением пористости пород на глубине иногда развиваются процессы, которые способствуют увеличению порового пространства: растворение, выщелачивание, перекристаллизация, образование трещин, метасоматоз (рис. 94).

Рис. 94. Процессы, способствующие формированию вторичной пористости в породах-коллекторах. Шлифы

Породы-флюидоупоры

Сохранение скоплений нефти и газа в породах-коллекторах невозможно, если они не будут перекрыты непроницаемыми для флюидов (нефти, газа и воды) породами - флюидоупорами (покрышками, экранами). Лучшими покрышками считаются соленосные толщи, но наиболее распространены в этом качестве глины.

Экранирующие свойства глин зависят от их состава, мощности и выдержанности, песчанистости или алевритистости, вторичных изменений, трещиноватости. Большое значение также имеют находящиеся в глинах вода и органическое вещество.

Важнейшим качеством глин для формирования экранирующих свойств является пластичность - важнейшее качество глин, обеспечивающее способность к перестройке структуры под влиянием приложенной нагрузки без нарушения сплошности сложенного глинами пласта. Она исключает механическое разрушение при прорыве нефти и газа под избыточным давлением (до определенного предела). Однако при росте давления в течение достаточно продолжительного времени предел пластичности может быть пройден, глина становится ломкой и хрупкой и теряет свои экранирующие свойства.

Соли, гипсы и ангидриты являются покрышками, хотя сквозь их толщу проходит медленный, но постоянный поток углеводорода. Более пластичные покрышки каменной соли являются лучшими по качеству, чем ангидриты и гипсы. С увеличением глубины возрастает пластичность солей и сульфатных пород, в связи с чем улучшаются и их экранирующие свойства.

Покрышки, относящиеся к разряду плотностных, образуются обычно толщами однородных монолитных, лишенных трещин тонкокристаллических известняков , реже доломитов , мергелей , аргиллитов. Карбонатные покрышки характерны для нефтяных залежей платформенных областей, для условий пологого залегания пород.

По площади распространения различаются региональные, зональные и локальные покрышки. Региональные покрышки имеют широкое площадное распространение, характеризуются значительной мощностью и литологической выдержанностью. Они обычно выдерживаются в пределах отдельных нефтегазоносных областей. Зональные покрышки бывают выдержаны как минимум в пределах одной зоны нефтегазонакопления. Локальные покрышки имеют ограниченное распространение, часто занимают площадь одного или нескольких месторождений. Они обусловливают сохранность отдельных залежей и характер их распределения в разрезе месторождения.

Карбонатные покрышки часто ассоциируются с кабонатными же коллекторами, границы между ними имеют весьма сложную поверхность. Для

карбонатных покрышек характерно быстрое приобретение ими изолирующей способности (в связи с быстрой литификацией и кристаллизацией карбонатного осадка). Для плотностных покрышек большое значение имеет мощность, увеличивающая в целом крепость пород.

Плотностные покрышки теряют свою герметичность на больших глубинах за счет появления трещин механического образования.

Типы пород – коллекторов, гранулометрический состав пород, коллекторские свойства трещиноватых пород.

К настоящему времени предложен ряд классификаций коллекторов терригенного (обломочного) и карбонатного состава, однако ни одна из них не получила практического применения. Это объясняется тем, что трудно создать универсальную классификацию коллекторов, которая отражала бы все их свойства и представляла бы не только академический интерес, но и удовлетворяла бы запросам промышленности, оказывая существенную помощь при поисках, разведке и разработке нефтяных и газовых месторождений.

В различных опубликованных классификациях рассматриваются самые разнообразные свойства коллекторов: в одних излагаются морфология и генезис поровых пространств (И.М. Губкин), в других коллекторы расчленяются по форме их поровых пространств (П.П. Авдусин и М.А. Цветкова), в третьих они расчленяются по проницаемости (А.Г. Алиев, Г. И. Теодорович), далее по признакам, характеризующим различные генетические типы коллекторов (Н. Б. Вассоевич), наконец, по эффективной пористости и проницаемости (А. А. Ханин) и т. д.

Основываясь на данных о пористости и проницаемости горных пород, все известные коллекторы нефти и газа можно подразделить на две большие группы: межгранулярные (поровые) и трещинные.



Основное их различие заключается в том, что емкость и фильтрационные свойства межгранулярных коллекторов (чаще всего песчаников) определяются в основном структурой порового пространства, тогда как в трещинных коллекторах фильтрация нефти и газа обусловливается главным образом трещинами. Основной емкостью для трещинных коллекторов служат те же, что и для межгранулярных, - межзерновые поры, а в карбонатных породах также и каверны, микрокарстовые пустоты и стилолитовые полости.

Роль самих трещин в общей емкости трещинного коллектора, как правило, незначительна и лишь иногда возрастает в зонах дробления горных пород вблизи дизъюнктивных дислокаций.

Трещинные коллекторы характеризуются разнообразием и сложностью их строения, наличием в них микротрещин, роль которых является ведущей в фильтрации флюидов. Однако не следует смешивать трещинный коллектор с трещиноватой породой, так как трещинный коллектор характеризуется лишь ему присущими специфическими особенностями, которые были указаны выше.

Е.М. Смехов и другие по условиям фильтрации выделяют два типа коллекторов - межгранулярные и трещинные, - а по характеру их емкости - каверновый, карстовый, смешанный и порово-трещинный, которые, в свою очередь, подразделяются по преобладающему значению той или иной структуры пустот.

Большая часть имеющихся в трещиноватых породах пустот, определяющих тип коллектора, сообщаются благодаря широко развитой в них сети микротрещин.

Приведенная классификация трещинных коллекторов может оказаться полезной на практике, так как выделение в разрезе того или иного типа трещинного коллектора способствует выбору надлежащего метода разведки и разработки месторождения, а также учету необходимых параметров (пористость, коэффициенты нефтенасыщенности и нефтеотдачи) для подсчета запасов нефти и газа.

Природные коллекторы весьма разнообразны по строению и чаще всего представлены смешанными типами с преобладанием того или другого основного типа.

Во всех районах распространены преимущественно две системы трещин, одна из которых, как правило, имеет простирание, совпадающее с простиранием слоев, вторая - с направлением падения слоев. Спорадически появляются диагональные к ним системы трещин.

Другой характеристикой трещиноватости является густота трещин, тесно связанная с литологией пород. Обычно наибольшей рас-тресканностью обладают кремнистые разности, затем глинистые и известковистые. В песчаных разностях в общем случае отмечены минимумы трещиноватости. Интенсивность трещиноватости не зависит от мощности слоя, что доказано на большом фактическом материале.

При изучении трещин в шлифах отмечено, что микротрещины развиты в той или иной мере во всех литологических разностях горных пород. Наименьшее количество трещин имеют песчаники и алевролиты, однако и в них отмечены открытые трещины и трещины, заполненные желтым битумом.

В то время как распределение трещиноватости в разрезе зависит от литологических разностей пород, распределение максимумов растресканности по площади тесно связано с тектоническими явлениями, контролируемыми упругостью породы. Имеются данные о том, что независимо от условий, максимумы трещиноватости преимущественно располагаются на периклиналях структур. Иногда они приурочены к изгибам слоев.

В то же время структуры платформенного типа имеют максимумы трещиноватости, спорадически распространенные по крыльям складок, на структурах геосинклинального типа - вдоль осей.

Согласно изложенной характеристике трещиноватых пород при определении их пористости (емкости) для подсчета запасов основное внимание должно быть уделено изучению межзерновой пористости. Однако в некоторых случаях при выяснении емкости коллектора необходимо учитывать и трещинную пористость, если межзерновая или вторичная равны первым единицам процента, а трещинная 1% и более.

Гранулометрический состав пород.Гранулометрический анализ горной породы дает представление о количественном содержании в ней частиц различной величины. Количественное содержание и соотношение фракций частиц в известной мере определяют пористость, проницаемость и коллекторские свойства породы. Гранулометрический анализ выражается в определении процентного содержания фракций зерна различной крупности (в мм). Он производится различными методами, подробно описываемыми в специальной литературе.

В промысловых условиях гранулометрический состав породы обычно определяют ситовым анализом, заключающимся в разделении частиц размером свыше 0,1 мм (0,074 мм). Для разделения частиц менее 0,074 мм применяют седиментационный и другие методы. Фракционный состав породы обычно записывают в таблицу (табл. 1).

По гранулометрическому составу выделяют разнообразные породы: глины, алевриты, пески и т. д. Характер дисперсности пород определяется не только их гранулометрическим составом, но и удельной поверхностью. Удельной поверхностью породы называется суммарная поверхность частиц, содержащихся в единице объема образца. Между гранулометрическим составом и удельной поверхностью существует определенная зависимость: чем больше мелких частиц в породе, тем больше ее удельная поверхность, и чем больше крупных частиц, тем меньше удельная поверхность. Таким образом, определение удельной поверхности породы дополняет данные гранулометрического анализа.

Наибольшую удельную поверхность имеют пелиты, меньшую - алевриты, а наименьшую - псаммиты. С увеличением удельной поверхности, как правило, ухудшаются коллекторские свойства породы.

Помимо этого, на основании данных гранулометрического состава судят о характере однородности породы. Для этого строят кривые суммарного состава и распределения зерен песка по размерам, откладывая по оси ординат нарастающие весовые проценты фракций, а по оси абсцисс - диаметры частиц в логарифмическом масштабе.

Построение указанной кривой в соответствии с примером гранулометрического состава илистого мелкозернистого песка, приведенного в таблице, ведется следующим образом. Данные таблицы преобразуют в удобный для графического изображения вид нарастающих процентов для соответствующих диаметров частиц.

На основе указанных данных строят кривую суммарного грануло­метрического состава. По указанной кривой определяют коэффициент неоднородности породы, под которым понимают отношение диаметра частиц фракции, составляющей со всеми более мелкими фракциями 60% вес. от веса всего песка, к диаметру частиц фракции, составляющей со всеми более мелкими фракциями 10% вес. от веса песка, т.е.

Для однородного по составу песка коэффициент неоднородности равен единице. Коэффициент неоднородности пород нефтяных месторождений России колеблется в пределах 1,1 – 20.

Знание однородности пород позволяет получить относительное суждение о его коллекторских свойствах, которые улучшаются для однородных песков (и песчаников) по сравнению с неоднородными.

Наряду с этим знание гранулометрического состава пород позволяет выбрать размер щелей фильтров в эксплуатационных колоннах для предотвращения (или ограничения) поступления песка из пласта в скважину.

Трещиноватость пород. Более 60% добываемой в настоящее время нефти в мире приур­чено к карбонатным коллекторам. В связи с этим проблема изучения трещинных коллекторов в последние годы приобрела весьма актуальное значение.

Изучение природы пористости и проницаемости карбонатных пород, их стратиграфии, тектоники, геологической истории и палеогеографии позволяет более эффективно проводить поиски, разведку и разработку связанных с ними залежей нефти.

Литолого-петрографическое изучение трещиноватости пород показало широкое распространение в породах микротрещиноватости («волосные» микротрещины). По происхождению микротрещины могут быть подразделены на диагенетическо-тектонические и тектонические. Выяснение происхождения трещиноватости возможно лишь при детальном изучении петрографических и геологических данных, характеризующих породы, и при наличии большого каменного материала.

В большинстве случаев трещиноватость пород преимущественно связана с тектоническими и реже с диагенетическими процессами.

Трещины диагенетического происхождения свойственны преимущественно известнякам и доломитам, они располагаются чаще перпендикулярно к слоистости.

Распространение трещин из одного слоя в другой с сечением поверхности напластования может свидетельствовать о тектоническом происхождении трещин. Трещины нетектонического происхождения обычно образуют в плане многоугольную сетку. Вопрос о происхождении микротрещин еще недостаточно изучен и требует проведения дальнейших исследований.

Нетектонические трещины, именуемые первичными, образовались в стадию позднего диагенеза и эпигенеза. В породах, прошедших стадию хотя бы первых слабых тектонических (колебательных) движений, первичные трещины преобразуются в тектонические и приобретают свойственные им особенности. Так как в земной коре не существует недислоцированных пород, кроме современных осадков, выделение более или менее значительного количества первичных трещин затруднительно.

В настоящее время тектоническое происхождение подавляющего большинства трещин можно считать доказанным. Об этом свидетельствуют особенности, свойственные трещиноватости:

1)объединение трещин в системы, образующие более или менее правильные геометрические сетки;

2)преимущественно вертикальный относительно слоистости пород наклон трещин;

3)тесная связь ориентировок основных систем трещин с направлением тектонических структур.

Такое происхождение имеют трещины в пределах одного пласта, а также пересекающие несколько пластов независимо от их состава и мощности. Аналогичное явление наблюдается в приконтактных трещинах, развитых на границах пород различного лито логического состава. Лишь трещины по слоистости (или по плоскостям, близким к ней, как, например, трещины кливажа) и диагональные к слоистости представляют исключение из преобладающих трещин, ориентированных в основном перпендикулярно к напластованию пород. Их происхождение связано с влиянием как первичных, так и вторичных процессов растворения (преимущественно в карбонатных породах) и односторонними направлениями тектонических деформаций в пластичных породах.

При изучении трещиноватости горных пород с целью определения их коллекторских свойств основной интерес представляют тектонические трещины.

Трещины, которые можно наблюдать невооруженным глазом в обнажениях, горных выработках, в керне, называют макротрещинами. В отличие от них трещины, различимые лишь в шлифах под микроскопом, называют микротрещинами. Верхний предел раскрытости (ширины) микротрещин условно принято считать равным 100 мк.

В целом трещиноватость (макро- и микротрещины) в горных породах характеризуется относительно правильными геометрическими системами трещин. В общем случае геометрическая сетка состоит из двух основных систем вертикальных (к слоистости) трещин с взаимно перпендикулярными направлениями. В отдельных случаях геометрическая сетка трещиноватости горных пород может быть представлена одной системой горизонтальных трещин по отношению к плоскостям напластования (рассланцованные, тонкослоистые породы) или тремя перпендикулярными системами (мергели), или сочетанием нескольких различно ориентированных систем (глины), создающим впечатление «бессистемного» (хаотичного) расположения трещин.

Установленная закономерность в расположении и ориентировке трещин в горной породе может рассматриваться как один из главных признаков, позволяющих определить такие важные параметры, как интенсивность трещиноватости и направление главных систем трещин.

Интенсивность трещиноватости пласта обусловливается общим количеством развитых в нем трещин и зависит от его литологического состава, степени метаморфизма пород, мощности вмещающей среды и структурных особенностей залегания пласта.

На коллекторские свойства трещиноватых пород значительное влияние оказывает литологический фактор; характер распределения и интенсивность проявления трещиноватости тесно связаны с вещественным составом исследуемых пород и структурно-текстурными особенностями; наиболее трещиноватыми являются доломитизированные известняки, затем чистые известняки, доломиты, аргиллиты, песчано-алевритовые породы, ангидрито-доломитовые породы и ангидриты.

Анализ большого фактического материала, проведенный в научно-исследовательских организациях, позволил установить, что проницаемость трещиноватых пород обусловливается системами развитых в них трещин и в общем случае пропорциональна их густоте.

Благодаря распределению трещин в горной породе по системам можно определить густоту трещин, которая дает возможность определить объемную и поверхностную плотности трещин.

Необходимые сведения о трещиноватости пород могут быть получены в процессе наблюдений в обнажениях на дневной поверхности, а затем экстраполированы на глубину - на участки со сходным геологическим строением. Такие наблюдения представляют большой практический интерес не только для территорий, где отсутствует глубокое бурение, но и для площадей, недра которых вскрыты скважинами.

Другим важным параметром трещиноватости горных пород является раскрытость (ширина) трещин. В зависимости от величины раскрытости (ширины) микротрещины делятся на очень узкие (капиллярные) 0,005-0,01 мм, узкие (субкапиллярные) 0,01-0,05 мм и широкие (волосные) 0,05-0,15 мм и более.

При исследовании трещиноватости пород, помимо густоты трещин и величины их раскрытости, следует изучать форму трещин (линейные или извилистые), степень выполнения их минеральным или битуминозным веществом и т. п.

По степени выполнения трещин различают открытые, частично выполненные и закрытые. Исследования различных лито логических разностей трещиноватых пород показали, что:

1) в песчаниках и алевролитах преобладают открытые микротрещины, реже появляются закрытые;

2) в глинах и аргиллитах также преобладают открытые микротрещины;

3) в мергелях имеются открытые и закрытые микротрещины;

4) в органогенных доломитовых известняках наряду с открытыми широко развиты закрытые микротрещины;

5) в доломитах наблюдается широкое развитие закрытых микротрещин с менее значительным распространением открытых; форма их извилистая, часто зазубренная.

Как известно, основными коллекторскими свойствами горной породы, характеризующими ее способность аккумулировать и отдавать флюиды, являются ее пористость и проницаемость. Пористость трещиноватой породы можно разделить на межзерновую и трещинную. Первая характеризует объем пустот между зернами (кристаллами) породы, вторая обусловлена объемом пустот, образованных трещинами. Объем полостей трещин называют трещинной пористостью (или иногда полостностью), а объем полостей трещин в единице объема трещиноватой породы - коэффициентом трещинной пористости (или полостности).

Кроме того, в карбонатных породах имеются пустоты, возникшие в породе за счет процессов растворения (каверны, микрокарстовые и стилолитовые полости). Таким образом, под общей пористостью трещиноватой породы следует понимать отношение суммарного объема пустот, содержащихся в породе, к объему этой породы.

Таким образом, при определении коллекторских свойств пород, очевидно, решающую роль имеет межзерновая пористость, а не трещинная.

В отличие от трещинной пористости, обычно мало влияющей на величину общей пористости породы, трещинная проницаемость фактически определяет величину общей проницаемости.

Трещины играют решающую роль в процессах фильтрации жидкости и газа в трещинных коллекторах. Это видно из того, что трещиноватые породы представлены обычно либо хрупкими, либо твердыми литологическими разностями, межзерновая проницаемость которых измеряется тысячными долями миллидарси. Между тем из таких пород в ряде отечественных и зарубежных месторождений получены весьма значительные притоки нефти и газа.

Основная часть нефтяных и газовых месторождений приурочены к осадочным породам - обломочным, органогенным и хемогенным.

Обломочные породы - коллекторы образуются за счет разрушения прежде существовавших горных пород - мXагматических и магматические.

Обломочные делятся на:

1. терригенные

рыхлые: сцементированные:

песок > 0,1 мм песчаник

алеврит 0,1 - 0,01 алевролит

глина < 0,01 аргиллит

Частицы разрушенных г.п. могут быть сцементированы глинистым и карбонатным цементом. Если цемент глинистый, то при бурении водоотдача должна быть минимальной, если водоотдача повышеннная, то глины будут набухать и проницаемость пласта будет падать и обусловит длительное освоение скважин и низкие дебиты.

Для повышения дебитов принимают глинокислотные обработки, растворяющие цемент и увеличвающие проницаемость.

Если цемент карбонатный, то применяют солянокислотные обработки. Большинство коллекторов месторождений Западной Сибири являются терригенными.

Обломочные карбонатные породы - это обломки известняка, доломита, карбонатных зерен...

Коллектора из карбонатных породов представлены в Вольго-Уральской и Тиманопечерских провинциях.

Органогенные породы - коллекторы - это известняки биогенные из останков животных и растительных организмов т.е. рифовые образования.

Это месторождения уралоповолжья, украины, белоруссии, ближнего и среднего востока, индонезии, брунея, венесуэлы, мексики, пермской области.

Хемогенные породы-коллекторы - известняки и доломиты, образующиеся из-за химических реакций при сносе в море солей, кальция и магния.

В пордах коллекторах выделяют Поры:

Первичные поры (образованы в ходе осадконакопления):

Структурные (между частицами зерен пород)

Поры между плоскостями пород

Биогенные пороы при разложении органики

Межгранулярные и межкристаллические

вторичные:

как результат выщелачивания, перекристаллизации, доломитизации и эрозионных процессов.

Первичные поры обычно заполнены остаточной или связанной водой, сохранившейся в породе. Вторичные поры содержат нефть и газ.ы

Неколлекторные породы – это породы, которые не отдают нефть и газы. Коллекторы – накапливающие и отдающие нефть, газ и воду.ы

Итоги исследования щлама и керна увязывают с данными ГИС, результатами испытаний и гидродинамических исследованиях. Наиболее пористые трещиноватые породы насыщенные УВ в процессе отбора разрушаются. В ЗС коллекторы определяются в основном по ГИС. Продуктивные пласты характеризуются отрицательными аномалиями кажущегося сопротивления и уменьшением диаметра скважин на кавернометрии.

37. Методика выделения коллекторов в терригенном в разрезе. Продуктивные пласты характеризуются отрицательными аномалиями кажущегося сопротивления горных пород (нефть и газ ток не проводят) и уменьшением диаметра скважин на кавернометрии.

Кавернометрией определяется диаметр скважин

При бурении глинистый раствор отфильтровывается в пласт и на поверхности интервала образуется глинистая корка и диаметр уменьшается.

38 . В карбонатных коллекторах три методы выделения из-за сложного строения: нефтегаз в порах, кавернах и трещинах.

Каротаж – испытание – каротаж.

Замер удельного электрического сопротивление до и после испытания позволяют выделять нужные интервалы.

После получения притоков сопротивление больше.

Метод двух растворов: сперва замеряют электрическое сопротивление, когда скважина заполнена буровым раствором, затем его меняют на воду и снова определяют сопротивление.

Вода обладает электропроводностью и проникает в пласть и сопротивление будет уменьшаться.

Совместное использование НГК и АГК. Методом НГК определяют общую пустотность пород: поры, каверны и трещины. АГК – только трещины. Так выделяется коллектор.

39. Породы коллекторы обнаруживаются также по увеличению скорости бурения, проходки на долото, провалы инструмента, поглощению бурового раствора, нефтегазоводопроводимости тк коллекторы пористые и проницаемости.

41. ФЕС характеризуется пористостью, кавернозностью и трещиноватостью.

Поры - это пустоты с диаметром < 2 мм

Виды пористости - полная, характеризуется сообщающимися и несообщающимися порами К п = V пор\V образца породы * 100 = %

Несообщающиеся поры не отдают нефть и газ.

открытая (только сообщающиеся поры). Юзается при подсчете запасов и составлении проектов разработки. К оп = (вес сухого образца керна - вес насыщенного керосином под вакуумом в воздухе образца) /(вес насыщенного керосином под вакуумом в воздухе образца - вес насыщенного керосином образца в керосине)

По размерам поры:

сверхкапиллярные = 2 - 05 мм

капиллярные = 05 - 0,0002

субкапиллярные < 0,0002

Сверх и просто капиллярные могут быть нефтегазоносны, а суб иметь остаточную воду.

Максимум открытой пористости - это около 30-40 процентов.

В ЗС наиболее часто встречается Кпо = 15-17%

К по = 10 - 17% - это трудноизвлекаемые запасы.

Для добычи нефти и газа бурят горизонтальные скважины, боковые стволы, проводят гидроразрыв пласта.

Если коэфициент открытой пористости < 10%, то залежи нерентабельны и исключаются из подсчета запасов.

В карбонатных коллекторах нефть и газ в трещинах и нижние пределы пористости 2-3%, и только с меньшей - нерентабельны.

Кавернозность. Пустоты с диаметром больше 2 мм. Каверны образуются в процессе отложения известняков в рифах и при разложении ОВ и циркуляции пластовых вод. При подсчете запасов учитывают по коэффициент кавернозности.

Каверны образуются в процесе отложения известняков в рифах и при разложении ОВ и при циркуляции пластовых вод.

К кавернозности = объем каверн \ объем пор * 100 = %

При наличии каверн и трещин дебиты на два-три порядка выше, ибо проницаемость в 100-1000 раз больше.

Трещиноватость.

Макротрещины > 40-50 мм

Микротрещины < стольки же

При бурении породы разрушаются, поэтому можно изучать только микротрещины. Т.к. основные запасы в трещинах, то трещиноватость изучают по промысловым данным с помощью фотокаратожа и телекамер.

При наличии трещин большие дебиты.

Проницаемость.

П - способность породы пропускать через себя нефть, газ или воду.

По формуле Дарси к пр = (расход флюида через образец * вязкость флюида * длина образца)\(площадь поперечного сечения образца*разница давлений на входе и выходе)

Максимальная проницаемость достигает 2-5 Дарси.

Проницаемость в ЗС обычно 0,05 - 0,5 мкм2

Если проницаемость меньше 0,05 то запасы трудноизвлекаемы. Для добычи трудноизвлекаемых проводят гидроразрыв.

42. Неоднородность, её виды и количественная оценка

Коллектора месторождений в Западной Сибири имеют высокую степень неоднородности.

Неоднородность - широкое изменение вещественного состава и коллекторских свойств по площади и по разрезу.

Есть два вида неоднородности:

Макронеоднородность

Изменение толщин продуктивных пластов и разделяющих непроницаемых прослоев. Изучают по структурным картам общих и нефтяных толщин.

h общ - толщина пласта от кровли до подошвы

h общ - h эфф = h коллектора

h н г = толщина прослоек

Для характеристик параметров строят карты общих эффективных толщин. Изучают по детальным геопрофилям.

Микронеоднородность - изменение коллекторских свойств по площади, по разрезу.

Микронеоднородность характеризуется коэффициентом песчанистости. К песч = h эфф\h общ= 0 - 1

Если 1-0,7 - то высокопрододуктивная