Российская энергетика: проблемы и перспективы. Проблемы и перспективы развития электроэнергетики в россии

Международная научно- практическая конференция « Малая энергетика-2005»

Дьяков А.Ф., Научный совет РАН по надёжности и безопасности больших систем энергетики, Москва, Россия

О роли и месте малой энергетики . Прежде всего, хотел бы отметить, что главным гарантом надёжного и безопасного обеспечения энергией потребителей нашей страны по-прежнему остаётся Единая энергетическая система России.

Однако, даже в ХХI веке, Единая энергетическая система охватывает немногим более 30 % территории страны, остальные 70 % - обеспечивают электроэнергией электростанции, работающие в автономном режиме или локальные энергосистемы, такие как Камчатская, Магаданская и Сахалинская. Поэтому перспективы развития малой энергетики, видимо, следует рассматривать с учётом этих обстоятельств, то есть в зоне ЕЭС и вне её, так как эти проблемы в каждой из этих зон решаются по-разному.

На территории страны, которую не охватывает ЕЭС, мы должны обеспечивать развитие малой и возобновляемой энергетики, в основном, за счёт создания комбинированных (гибридных) электростанций, на базе 2-х, 3-х и более источников энергии. Например, ветро-дизельных, ветро-солнечных, ветро-гидравлических или солнечно-теплонасосных станций.

При этом крайне важно, использовать на малых электростанциях именно те источники энергии, которые позволяют свести к минимуму завоз топлива в отдалённые и труднодоступные регионы, особенно районы Крайнего Севера.

При развитии малой энергетики в зоне ЕЭС, надо исходить из того, что она не предназначена решать проблемы обеспечения надёжности и живучести Единой энергетической системы в условиях быстрого роста энергопотребления. Но в период плавного, постепенного роста энергопотребления, на этапе реформирования энергетики, адаптации её к рыночным отношениям, малая энергетика, безусловно, может сыграть важную роль.

Кроме того, с целью обеспечения гарантированного энергоснабжения важнейших объектов жизнеобеспечения на случай аварийного отключения их от ЕЭС, малые автономные электростанции на этих объектах могут использоваться в качестве резервных мощностей. В необходимости такого резервирования мы ещё раз убедились, во время системной аварии 25 мая 2005 г. в Московской и смежных - Калужской, Рязанской, Смоленской и Тульской энергосистемах.

Сегодня, когда в нашей стране идёт реформирование электроэнергетики, происходит не только изменение структуры управления отраслью, но и изменение денежных потоков, прежде всего, их дальнейшее дробление.

В связи с чем, изыскание собственных средств на строительство крупных электростанций и даже отдельных энергоблоков, во многих случаях, просто невозможно. Наглядный пример тому, последствия реформирования электроэнергетики в Англии и других странах.

В этих условиях, в ближайшие годы мы реально можем рассчитывать лишь на незначительные объёмы инвестиций и строительство, в основном, небольших электростанций. Реализация таких проектов позволяет сократить объём инвестиций, сроки их возврата, снизить инвестиционные риски.

При этом важно помнить и считаться с тем, что доля инвестиций на один кВт установленной мощности малых электростанций больше, чем крупных. К тому же, следует признать, что уровень нынешних заниженных тарифов, не создаёт благоприятных экономических условий для развития малой энергетики, так как ведёт к увеличению сроков окупаемости даже таких небольших электростанций.

Сегодня, крайне важно, изучить рынок малой энергетики, чтобы с его учётом строить работу не только энергетиков, но и машиностроителей, производящих энергооборудование для этих электростанций.

Однако приходится констатировать, что рынок малой энергетики развивается пока, в основном в Европейской части страны, где успешно функционирует Единая энергетическая система. Тогда как сама жизнь, нужды населения, потребности развития промышленности, транспорта, сельского хозяйства страны, требуют более активного продвижения малой энергетики в Сибирь, на Дальний Восток, в районы Крайнего Севера, где нет возможности компенсировать нехватку электроэнергии, используя возможности ЕЭС.

Вполне понятно, что в перспективе более активно будет развиваться малая энергетика на базе возобновляемых источников энергии (ВИЭ), её доля, в общем объёме установленной мощности электростанций, несомненно, будет расти.

О важности более широкого использования возобновляемых источников энергии в XXI веке, вряд ли кого-то надо убеждать. По прогнозу Европейского Совета по возобновляемой энергетике (Renewable Energy World. Juiy-August 2004), доля ВИЭ в мировом потреблении первичной энергии к 2040 году достигнет 47,7 % (рис.1).

Сегодня всем ясно, что основные не возобновляемые энергоресурсы, раньше или позже, исчерпаются. По одним прогнозам угля хватит на 1500 лет, нефти - на 250, газа -на 120 лет. По другим прогнозам перспектива хуже. Нефть должна закончиться лет через 40, газ - через 80, уран - через 80-100 лет, угля может хватить ещё лет на 400.

Доля возобновляемых источников энергии, в общем, объёме энергопотребления, в мире постоянно увеличивается. По данным МИРЭС этот показатель в максимальном варианте к 2020 году может возрасти до 8 - 12 %. В лидеры по использованию возобновляемых источников энергии сегодня вышли страны Европейского Союза (ЕС). В директивных документах ЕС поставлена задача, вдвое увеличить долю ВИЭ в энергетическом балансе Европы (с 6% до 12%), в выработке электроэнергии - с 14% до 22% .

При этом большая часть доли ВИЭ в балансе электроэнергии приходится на гидроэнергетику, потенциал которой для строительства крупных ГЭС, практически исчерпан. Поэтому дальнейшее наращивание производства электроэнергии за счёт строительства гидростанций, связывается именно со строительством малых ГЭС.

Значительный рост доли ВИЭ в энергобалансе ЕС намечается обеспечить и за счет ветровой энергетики. Но это добавляет энергетикам много проблем, связанных с необходимостью развития электрических сетей, усложнением диспетчерского управления оперативными режимами, обеспечением надежности и безопасности энергоснабжения потребителей.

Кроме того, в зависимости от доли ветроэлектростанций, в суммарной установленной мощности энергосистем, тарифы на электроэнергию в этих странах, могут вырасти в ближайшее время на 13 - 25%, а в перспективе, при достижении намеченной доли ветровой энергетики в энергобалансе, рост тарифов может составить в среднем 34%.

Что касается данных о ресурсах возобновляемых источников энергии в России, то они представлены в табл. 1. Причём значительными возобновляемыми ресурсами располагают большинство регионов страны, в том числе и проблемных, с точки зрения энергоснабжения.

Видимо, нет необходимости подробно их комментировать, отмечу лишь, что экономический потенциал ВИЭ в нашей страны составляет 270-335 млн. т у. т., то есть более 25 % от внутреннего энергопотребления. Однако, используется сегодня всего 1,5 млн. т у. т., а в общем энергобалансе нашей страны ВИЭ составляют не более 0,5 % по электроэнергии и 4 % - по теплу.

В соответствии со стратегией развития энергетики России на перспективу до 2020 года возобновляемые источники энергии будут составлять пока незначительную долю в силу своей дороговизны и невысокой надежности.

В связи с чем, малую энергетику на базе возобновляемых источников энергии на ближайшую перспективу надо рассматривать, прежде всего, как средство решения проблем энергоснабжения в отдалённых и труднодоступных регионах, как средство решения экологических проблем, которые всё больше обостряются, и, наконец, как средство энергосбережения.

Газотурбинные (ГТУ) и парогазовые (ПГУ) энергетические установки. Они являются сегодня наиболее перспективными источниками тепловой и электрической энергии. Речь идёт, прежде всего, о малых модульных электростанциях на базе отечественных ПГУ и ГТУ (2,5, 4,0, 6.0, 8,0 и 12,0 МВт) с использованием газа, разумеется, там, где он уже есть или где можно и экономически выгодно проложить газопровод.

В табл. 2. даны основные технические характеристики малых энергетических установок на газе: ГТЭС «Урал-2500», «Урал-4000» и Урал-6000». Особо следует отметить высокий КПД этих станций - 79,0 %, 81,0 % и 83,1 % соответственно.

Сегодня нельзя сбрасывать со счетов возможность создания на действующих муниципальных и ведомственных котельных небольших газотурбинных и парогазовых установок, для производства электроэнергии, то есть превращение их в малые или мини-ТЭЦ. Строительство таких мини-ТЭЦ не требует значительных затрат времени и средств, но добавка выработки электроэнергии может быть существенной, что крайне важно при нынешнем дефиците инвестиций. Разумеется, речь идёт о котельных на газе и тех из них, где для такой реконструкции есть возможности.

Нельзя забывать и такое важное направление увеличения энергопроизводства, как создание мини-ТЭЦ на базе небольших ГТУ и ПГУ с использованием газа и тепла, применяемых в производственном процессе предприятий. Большие возможности для увеличения выработки электроэнергии и тепла имеются, например, у сахарных заводов, которые также можно реализовать путём пристройки к ним небольших ПГУ и ГТУ.

Необходимо более широко использовать для наращивания производства электроэнергии электростанции, создаваемые на базе компрессорных станций магистральных газопроводов страны, используя в этих целях турбодетандеры, газовые турбины с нагнетателем газа, а также регенераторы тепла сжатого воздуха компрессоров. Надо отметить, что Газпром проводит определённую работу в этом направлении, но объединение с ним усилий РАО «ЕЭС России» может дать значительно больший эффект.

Дизельные электростанции (ДЭС). Они составляют основу электроснабжения в арктических районах России. Только в этом регионе работает примерно 47 тыс. малых дизельных электростанций.

Однако, большинство ДЭС имеют низкий КПД (до 0,4) и ограниченный ресурс службы, высокие удельные расходы (250-300 г/кВт·ч.) очень дорогого дизельного топлива (в 6-7 раз дороже газа и в 2 раза - топочного мазута). По сравнению с другими малыми электростанциями ДЭС имеют сверхнормативные значения выбросов загрязняющих веществ, а себестоимость, вырабатываемой ими электроэнергии, достигает 6 руб./кВт·ч.

Кроме того, отечественные дизельные энергоустановки всё ещё уступают лучшим зарубежным ДЭС по экономичности и надёжности, а также по габаритам и массе на единицу установленной мощности.

Поэтому в целях дальнейшего повышения эффективности и надёжности ДЭС необходимо повышать их удельную мощность на единицу массы, внедрять газотурбонаддув, переводить на газовое и нефтяное топливо, расширять производство автоматизированных ДЭС контейнерного типа, развивать систему сервисного обслуживания предприятиями-изготовителями.

Газодизельные электростанции (ГДЭС). В последнее время во всём мире активно внедряются ГДЭС, использующие природный газ. У газопоршневых электростанций топливная составляющая стоимости электроэнергии в 2-2,5 раза меньше, чем у обычных ДЭС. Что ещё важно, так это то, что газопоршневые двигатели малых электростанций могут работать и на промышленных газах: коксовом, биогазе, шахтном и др. У нас ГДЭС внедряются пока медленно, хотя в настоящее время многие российские заводы приступили к производству таких электроустановок.

Гибридные электростанции. Наиболее перспективными в удаленных и арктических районах являются комбинированные (гибридные) электростанции, например, ветродизельные электростанции (ВДЭС). Такие электростанции обеспечивают сокращение потребления дизельного топлива на 30-50% и увеличивают жизненный цикл дизельгенераторов в 2-3 раза. Гибридные электростанции при своей круглогодичной эксплуатации снижают потребление жидкого топлива в 4-6 раз и имеют срок окупаемости не более 3-х лет.

Интерес представляет комбинированный автономный блок-модуль биогазо-ветро-солнечной тепло-электростанции ЗАО ЦЕНТР «ЭКОРОС», в состав которого входят:

Биогазовая теплоэлектростанция мощностью не менее 10-15 кВт (электрических) и не менее 60 кВт (тепловых);

Ветроэлектрическая станция мощностью не менее 16-32 кВт;

Станция солнечного теплоснабжения мощностью 2300 литров воды в сутки с температурой не менее 60 °С.

Малые атомные электростанции. В более отдалённой перспективе предпочтения, видимо, будут отдаваться малым АЭС, так как в удалённых и труднодоступных местах, особенно в условиях Крайнего Севера, куда сложно и крайне дорого обеспечить доставку топлива, они будут наиболее эффективными.

Пока малые атомные теплоэлектростанции (АТЭС ММ) намечается построить в четырех городах России: Вилючинске (Камчатка), Северодвинске (Архангельская область), Дудинке (Красноярский край) и Певеке (Чукотка).

Кроме того, всё более настоятельно требуется создание атомных электростанций мощностью от 1,5 до 6-10 МВт для снабжения энергоресурсами небольших селений и районов. Стратегия развития малой энергетики России для решения подобных задач предусматривает строительство плавучих АЭС с использованием судовых технологий, а в этом деле, как известно, у России опыт большой.

Однако на осуществление таких проектов требуются значительные инвестиции, что, в первую очередь, и тормозит строительство таких электростанций. Например, стоимость строительства атомной электростанции малой мощности в Северодвинске составит примерно 180-200 млн. долларов. Установленная мощность этой АТЭС ММ составит 70 МВт электроэнергии и 50 Гкал тепловой энергии, сроки окупаемости проекта не менее 13 лет.

Малая гидроэнергетика (МГЭС). Экономический потенциал гидроэнергетики в мире составляет 8100 млрд. кВт·ч. Доля малых и микроГЭС составляет около 10% общего экономического гидропотенциала мира. Лидером в развитии малой гидроэнергетики является Китай. Установленная мощность МГЭС в этой стране превышает 20 тыс. МВт. Широкое распространение малые ГЭС получили в Австрии, Финляндии, Норвегии и Швейцарии.

В России экономический потенциал МГЭС составляет 200 млрд. кВт·ч/год, а используется всего 1-2 %. В настоящее время в России работают немногим более 300 МГЭС, общей мощностью 1000 МВт. Разумеется, в ближайшие годы малые и микро-ГЭС будут востребованы и в нашей стране. Правительством Республики Дагестан, например, принята специальная «Программа строительства малых гидравлических электростанций в республике до 2010 г.», которая успешно выполняется.

На мой взгляд, назрело время вернуться к проблеме восстановления микро - и малых ГЭС в России. Как известно, в 50-60 годы малых ГЭС в нашей стране было более 10 тысяч, но в связи со строительством в последующие годы большого количества крупных электростанций, малые гидростанции были заброшены. По этим же причинам было прекращено и производство отечественного оборудования для таких гидростанций.

Однако сегодня, в связи развитием фермерских хозяйств на селе, увеличением количества небольших частных предприятий, интерес к малым и микро-ГЭС растёт. Это начинает учитывать и наша промышленность. В стране растёт производство оборудования для микро- и малых гидростанций. Интерес представляют разработки ОАО «МНТО ИНСЭТ». Мощность гидроагрегатов этого общества колеблется в диапазоне от 10 до 6000 кВт. Стоимость 1 кВт микро - и малых ГЭС составляет 300 -900 долларов США.

Геотермальная энергетика. Надо отметить, что установленная мощность ГеоТЭС в мире достигла свыше 8000 МВт. В США показатель установленной мощности приблизился к отметке 3000 МВт. Произведенное на ГеоТЭС электричество вместе с теплом, напрямую идущим на обогрев и промышленные нужды, составляет в энергобалансе этой страны более 1%. В Мексике геотермальная составляющая превышает 4%, но абсолютный лидер - Филлипины, где десятки ГеоТЭС общей мощностью 2000 МВт вырабатывают пятую часть всей электроэнергии, производимой в стране. В Исландии все потребности страны в тепле и электроэнергии обеспечиваются за счёт геотермальных ресурсов.

Россия располагает огромными геотермальными ресурсами, используя которые для теплоснабжения городов и поселков, наша страна могла бы экономить 20-30% ископаемого топлива в течение ближайших 5-10 лет. Но, обладая такими запасами геотермальной энергии и являясь технологическим лидером в этой области, Россия значительно отстаёт в их практическом использовании.

В настоящее время в нашей стране действуют 3 геотермальных электростанции, расположенные на Камчатке: Паужетская ГеоЭС, Верхне-Мутновская ГеоЭС и Мутновская ГеоЭС. Их суммарная мощность составляет более 70 МВт. Кроме того, на Курильских островах работает три небольшие геотермальные установки.

Ведётся строительство 3-го блока Мутновской ГеоЭС, которая состоит из 4-х блоков по 25 МВт. ОАО "Геотерм" разработало также ТЭО инвестиций на сооружение 4-го блока Верхне-Мутновской ГеоЭС с использованием бинарного цикла, что позволит увеличить эффективность использования геотермального теплоносителя на 20-25%. Схема геотермальной бинарной электрической станции представлена на рис. 2.

В Ставропольском крае одобрена концепция и бизнес-план комплексного использования геотермальных ресурсов Казьминского месторождения. Температура воды здесь достигает 124 °С, а наличие 14 пробуренных скважин позволяет получить в год не менее 24 млн. кВт·ч электроэнергии, вырабатываемой на бинарной ГеоЭС, и около 300 тыс. Гкал тепла. В Краснодарском крае подготовлен проект использования геотермальных вод для тепло- и электроснабжения г. Лабинска общей тепловой мощностью 100 МВт и электрической - 4,0 МВт.

Важно отметить, что для развития геотермальной энергетики в стране имеется необходимое отечественное оборудование, производство которого налажено в ОАО «Калужский турбинный завод».

Дальнейшее расширение промышленного использования месторождений геотермальных вод позволит нашей стране в значительной мере сократить потребление природного газа за счет перехода на использование более дешевых источников энергии. Одним словом, в ближнесрочной перспективе, среди возобновляемых источников энергии, геотермика, опирающаяся на турбинные технологии, будет играть важную роль.

Тепловые насосы (ТН). Прежде всего, важно отметить, что тепловые насосы, используя низкопотенциальное тепло воздуха и грунтовых вод, производят тепла в 3 -7 раз больше, чем потребляют электрической энергии. В настоящее время в мире более 10 млн. ТН, общей мощностью 30 тыс. МВт. Широко применяются тепловые насосы в Швеции, Германии, Австрии, США и Японии. По прогнозам МИРЭС доля тепловых насосов в теплоснабжении в мире к 2020 г. составит 75 %.

В России тепловые насосы используются пока недостаточно, хотя возможности для использования их огромны. В нашей стране сегодня немногим более 100 ТН, а их суммарная мощность составляет примерно 30 МВт.

На рис. 3 представлена схема одного из тепловых насосов, производимого ЗАО НПФ «Тритон-лтд». Стоимость оборудования ТН колеблется в пределах от 80 до 180 долларов США за 1 кВт тепловой энергии, а сроки окупаемости, не превышают 3 лет.

Перспективным направлением применения тепловых насосов является использование тепла обратной сетевой воды в системах дальнего транспортирования тепла, а также - дымовых газов. Причём, чем выше температура используемого источника тепла, тем лучше энергетический баланс. При этом, большинство теплонасосных систем обходятся без поддержки отопительных котлов даже в самые холодные периоды времени, поэтому перспективы таких установок в нашей стране огромны.

Приливные электростанции (ПЭС). Общий потенциал использования приливной энергии мирового океана оценивается в 800 ГВт, что может обеспечить до 15% мирового энергопотребления. В настояшее время действует ПЭС Ранс во Франции (249 МВт), Аннаполис - в Канаде (20 МВт), три ПЭС - в Китае, одна - в Корее, а также Кислогубская ПЭС (400 кВт) в России.

В России есть большие возможности для строительства приливных станций. По расчетам ученых, лишь в Европейской части и на Дальнем Востоке нашей страны от энергии прилива может быть получено более 120 ГВт мощности.

Специалистами Научно-исследовательского института энергетических сооружений разработана для приливных электростанций принципиально новая, ортогональная турбина, не имеющая аналогов в мире. Ими подготовлены также предложения по строительству на базе типового блок-модуля, с использованием ортогональной турбины, Тугурскую ПЭС (мощностью 8 млн. кВт) и Мезенской ПЭС (11,4 млн. кВт). Использование новой турбины на этих ПЭС позволиет уменьшить капитальные вложения на их сооружение на 17 %, по сравнению с затратами на ПЭС с осевыми капсульными агрегатами.

Энергоустановки с использованием топливных элементов (ТЭ). В последние годы во многих странах высокими темпами развивается электрохимическая энергетика с использованием водорода и топливных элементов. Высокая эффективность ТЭ, отсутствие движущихся частей, шума, экологическая чистота вызывают всё больший интерес к таким установкам.

Рынок топливных элементов в США, например, за последние 5 лет вырос с 218 млн. до 2,4 млрд. долларов, при среднегодовом росте 62 %. Большое внимание использованию топливных элементов уделяют Европейский союз, Япония и Англия. В Японии, например, планируется создать до 2010 г. энергоустановок на топливных элементах общей мощностью 2000 МВт. В Великобритании с помощью регенеративных топливных элементов планируется выравнивать графики нагрузки.

В США, Германии и Японии создаются комбинированные энергетические установки по выработке электроэнергии и тепла с использованием топливных элементов, ГТУ, ПГУ, энергии ветра и солнца, получившие название гибридных энергоустановок (ГИЭУ). Реально достигнутый КПД ГИЭУ в настоящее время составляет 60 %, к 2010 г. намечается достигнуть 70 %, а в перспективе, при комбинированной выработке электрической и тепловой энергии, - 85-90 %.

В России также многие годы успешно ведутся работы по созданию энергоустановок на базе топливных элементов, предназначенных в первую очередь для космических исследований. В последнее время к созданию высокоэффективных энергоустановок на основе топливных элементов, в том числе и гибридных, подключились и наши отраслевые институты. Одним словом, это перспективное направление в энергетике, несомненно, получит дальнейшее развитие и займёт важное место в малой энергетике нашей страны.

Ветроэнергетические установки (ВЭУ). Передовые страны мира определили своей целью увеличить долю выработки электроэнергии ветроэлектростанциями к 2020 году до 12%. При поддержке и поощрении государства ветроэнергетика успешно развивается в таких странах, как: Германия, Дания, США, Великобритания, Испания, Индия. В 2002 году суммарная мощность ветроустановок в мире достигла 31 ГВт, к концу 2003 г. - почти 37 ГВт, в текущем году - более 50 ГВт.

В США, например, мощность смонтированных ветроустановок сегодня составляет порядка шести тысяч МВт, а к 2020 году, в соответствии с принятой программой развития ветроэнергетики в стране, должна достигнуть 80 тысяч МВт.

Россия также обладает огромными ветроэнергетическими ресурсами, особенно на территории Крайнего Севера, Юга России и Дальнего Востока - где использование энергии ветра экономически выгодно. Экономический потенциал ветровой энергии в нашей стране составляет примерно 260 млрд. кВт×ч/год, т.е. около 30% производства электроэнергии всеми электростанциями России.

Первая в мире ветроэлектростанция ЦАГИ Д-30, мощностью 100 кВт была построена в 1932 году в Крыму. Но увлечение масштабными энергетическими проектами в шестидесятые-восьмидесятые годы в нашей стране надолго затормозило развитие малой энергетики.

Тем не мене, в России уже действуют:

Заполярная ветроэлектростанция мощностью 1,5 МВт (Комиэнерго),

Куликовская ВЭС - 5,1 МВт (Янтарьэнерго),

Маркинская ВЭС - 300 кВт (Ростовэнерго),

Марпосадская ВЭС - 215 кВт (Чувашэнерго),

ВЭС «Тюпкельды» - 2,2 МВт (Башкирэнерго),

Чукотская ВЭС на мысе Обсервации - 2,5 МВт (Чукотэнерго),

ВЭС на острове Беринга - 500 кВт (Камчатскэнерго).

На Калмыцкой ВЭС мощностью 22 МВт (Калмэнерго), из-за отсутствия средств смонтированы пока только 2 ВЭУ «Радуга-1000», а работает одна. На побережье Финского залива в Ленинградской области намечается построить первую в России промышленную ветроэлектрическую станцию мощностью 75 МВт. На её строительство потребуется примерно 100 млн. долларов США.

В настоящее время изучается возможность строительства в Калининградской области "Морского ветропарка", состоящего из 25 ветроустановок по 2 мегаватта каждая, в 500 метрах от берега Балтийского моря. Реализация этого проекта, явится первым шагом в нашей стране по использованию шельфовой зоны моря для возведения ВЭС большой мощности.

Строительство ветроэлектростанций, безусловно, будет продолжаться и дальше, но их сооружение должно осуществляться, прежде всего, в тех местах, где не только хорошие ветра, но и отсутствует централизованное электроснабжение, так как эффективность ВЭС пока мала, а стоимость электроэнергии, произведенной ими, в 3 раза больше, полученной от традиционных источников. Поэтому сроки окупаемости таких станций велики.

Солнечные энергоустановки. На мой взгляд, достойное место в энергобалансе многих регионов нашей страны в перспективе могут занять солнечные энергоустановки, особенно горячего водоснабжения.

Солнечные установки теплоснабжения и горячего водоснабжения наибольшее распространение получили в Краснодарском крае. Одна из первых энергоустановок в крае действует с 1989 г. на крыше издательства "Советская Кубань"(432 коллектора), В пансионате "Лесная поляна" в 1999 г. установлено 68 коллекторов, которые обеспечивают горячее водоснабжение в летнее время. Хорошо себя зарекомендовали солнечные установки горячего водоснабжения Краснодарской краевой больницы и санатория «Лазаревское» в г. Сочи.

Сегодня наиболее перспективными являются солнечные установки теплоснабжения и горячего водоснабжения для индивидуальных потребителей. Стоимость системы горячего водоснабжения и отопления, например, для дома площадью до 250 м 2 , с использованием солнечных коллекторов, срок эксплуатации которых не менее 30 лет, обойдётся владельцу около десяти тысяч долларов США, или 90 центов в день.

В последние годы в нашей стране не только расширяется производство солнечных коллекторов, но и повышается их качество, снижается себестоимость. Например, солнечные коллектора ОАО «Ковровский механический завод» и ФГУП НПО «Машиностроение» по своим характеристикам не уступают лучшим мировым аналогам. Причём один м 2 такого коллектора стоит примерно 170 долларов США.

В области солнечной электроэнергетики наиболее перспективными признаны фотоэлектрические установки с прямым преобразованием солнечного излучения в электроэнергию с помощью солнечных фотобатарей. Фотоэлектрические модули, преобразующие энергию солнечных лучей в электричество, имеют в своей основе кристаллический или аморфный кремний и, в зависимости от площади модуля, мощность его может достигать 80-1000 и более Вт, а снимаемое напряжение составляет 12, 24, 48 В (табл. 3).

В настоящее время в мире наблюдается настоящий бум производства фотоэлементов для прямого преобразования солнечной энергии - в электрическую. Ежегодные темпы их роста за последние годы составили 30 %. В США, их годовое производство достигло 60 МВт, в Японии - 80 МВт, в Германии - 50 МВт. В Германии и США успешно реализуется специальные программы в этой области электроэнергетики.

Однако, солнечная энергия пока дорога и малоэффективна, требует больших затрат на эксплуатацию. Цена электроэнергии на солнечных фотоэнергетических установках хотя и снизилась за последние годы, но всё ещё велика, около 20 центов за кВт.ч.

Энергетические установки с использованием биомассы. В большинстве стран Западной Европы, в США, Канаде, а также в Китае, Индии и Бразилии, большое внимание уделяется использованию биомассы, как источника экологически чистого топлива и энергии.

В России ежегодное количество органических отходов составляет более 390 млн. тонн, в том числе сельскохозяйственных - более 250 млн. тонн. Сегодня у нас имеются интересные разработки энергетических установок для использования энергии биомассы, налаживается производство отечественного оборудование для них.

Но пока мы имеем дело, как правило, лишь с экспериментальными и демонстрационными образцами. Например, на рис. 4 представлена схема биогазоэнергетического модуля БИОНЭ - 1, разработанного ЗАО ЦЕНТР «ЭКОРОС». На его базе построена первая биоэнергетическая мини-тепло-электростанция, с попутным производством органического удобрения, в Агроплемфирме «Искра» Московской области. Одним словом, разработки есть, но дальше опытно-эсперементальных установок дело не идёт. Хотя возможности для использования таких энергоустановок в нашей страны очень велики.

Мусоросжигательные заводы с энергетическими установками. Необходимость переработки во многих регионах постоянно увеличивающихся твёрдых бытовых отходов, настоятельно требует расширения строительства мусоросжигательных заводов с выработкой тепла и электроэнергии.

Сегодня мусоросжигательных заводов, производящих энергию, много в Германии, Японии, Швейцарии, Бельгии и других странах. В России такие заводы, активно стали строиться только в последние 15-20 лет. Они имеются во Владивостоке, Владимире, Москве, Мурманске, Пятигорске, Сочи и Челябинске. Строится такой завод и Санкт-Петербурге. В Москве имеется программа строительства 10 таких заводов. Однако эйфории по поводу дальнейшего тиражирования таких заводов, видимо, не должно быть. И на это имеются серьёзные причины.

Во-первых, сжигание твёрдых бытовых отходов, дело крайне дорогое и, во-вторых, далеко не безвредное. Все такие заводы относятся к опасным производствам, не ниже 2-й категории. Выбрасываемые ими диоксины - являются большой текущей проблемой этих заводов, а загрязнение окружающих территорий тяжёлыми металлами - большой и перспективной, так как избавиться от них не возможно в течение многих лет.

Именно этими причинам вызвано закрытие в последние годы некоторых мусоросжигательных заводов в Англии, Нидерландах, заражение территории вокруг которых диоксинами превышает среднее по стране в 50-100 раз. Такие же проблемы возникли в Польше и других странах. Одним словом, некоторые из этих заводов оказались опасней полигонов для захоронения мусора.

Поэтому решение о строительстве таких заводов на перспективу, видимо, следует принимать лишь с учётом конкретной ситуации с твёрдыми бытовыми отходами и состоянием экологии, сложившейся в том или ином регионе. К тому же, на большинстве наших мусоросжигательных заводов энергетические установки хотя и имеются, но по разным причинам фактически не работают.

Некоторые проблемы, которые следует учитывать при развитии малой энергетики, в том числе и на базе возобновляемых источников энергии.

Во-первых, речь идёт о необходимости учёта таких специфических особенностей работы энергоустановок на ВИЭ, как изменение водных, воздушных и солнечных потоков, неустойчивость в их работе, в том числе и длительные перерывы. В связи с чем, представляется целесообразным создавать гибридные энергоустановки, то есть одновременно использовать в них несколько источников энергии.

Во-вторых, при строительстве мини и малых электростанций надо использовать модули высокой заводской готовности, предусматривать автоматизированные системы управления ими, а так же периодическое обслуживание их силами заводов - изготовителей оборудования.

В-третьих, при создании энергоустановок ВИЭ надо быть готовым к большим первоначальным инвестициям и высоким тарифам на энергию. К уровню действующих в энергетике России тарифов, приближается стоимость электроэнергии, вырабатываемой только энергоустановками, с использованием геотермальных вод. Стоимость электроэнергии, вырабатываемой электростанциями на базе других ВИЭ, значительно дороже.

В-четвёртых, крайне важно, искать пути экономии затрат на эксплуатацию таких электростанций. Например, обеспечить их пуск, работу и останов в автоматическом режиме, а обслуживание и ремонтные работы выполнять вахтовым методом. Разумеется, что всё это требует ускоренного развития в энергетике, средств связи и телемеханики.

В-пятых, предпринимая шаги по расширению в перспективе строительства малых электростанций, мы должны решать и проблемы, которые с этим связаны. Речь идёт, в частности, об адаптации малых энергетических установок к работе в составе Единой энергетической системы, а также о параллельной работе с другими электростанциями.

Узнайте актуальную информацию о

Энергия является основой обеспечения необходимых условий жизнедеятельности и развития человечества, уровня его материального и экономического благополучия, а также взаимоотношений общества с окружающей средой. Самым удобным в использовании и экологичным энергоносителем является электроэнергия. Она является базой ускорения научно- технического прогресса, развития наукоемких отраслей и информатизации общества. Таким образом, на перспективу до 2035 г. ожидается рост электрификации мировой экономики и потребления электроэнергии. Для рассмотрения прогноза электроэнергетической отрасли, отметим факторы, которые могут вызвать изменение производства и потребления электроэнергии:

· темпы экономического роста;

· рост численности населения;

· повышение эффективности использования энергии и энергосбережение;

· старение квалифицированных кадров электроэнергетики развитых стран;

· рост внимания к экологической безопасности, в том числе политика снижения выбросов CO 2 .

Рассмотрим общий прогноз производства электроэнергии.

Таблица Прогноз производства электроэнергии, ТВт-ч

Объем производства

Мы видим, что наибольший прирост производства ожидается к 2015 г.- 18%. Средние темпы прироста в период с 2008 по 2035 гг. составляют 13%.

Рассмотрим структуру видов производства электроэнергии в прогнозном периоде:

На диаграмме видно, что при росте производства электричества структура его источников практически неизменна. Основную долю в структуре производства электроэнергии составляет электроэнергия, произведенная на угольных ТЭС (около 39%). На втором месте стабильно находится электричество на основе природного газа: в среднем 23%. Изменения долей атомной и гидроэнергетик также не ожидается, они занимают в структуре по 14% и 16% соответственно. В прогнозируемом периоде ожидается небольшой рост доли электроэнергии на основе ВИЭ- с 3% до 7%,причем достижение 7% доли ожидается к 2020 г., в дальнейшем планируется стабильное развитие.

В прогнозе отмечается некоторое увеличение потребления угля для производства электроэнергии. Такой сценарий возможен: экономический рост Китая и Индии мотивирует их разрабатывать собственные залежи и развивать за счет дешевой добычи угля электроэнергетику и производство. Установленная мощность угольных генерирующих мощностей в этих странах возрастет с 2008 г. 2035 г. почти вдвое. Развитие отрасли потребует значительных инвестиций в добывающую отрасль и инфраструктуру (в том числе транспортную), так что в период развития отрасли, на наш взгляд, нельзя ожидать от этих стран быстрого экономического роста.

Производство электроэнергии на АЭС в 2008 году составило 2600 ТВт-ч, а к 2035 году, прогнозам, оно увеличится до 4900 ТВт-ч. В настоящее время растет не только производство электроэнергии на АЭС, но и их КИУМ: с 65% в 1990 году до 80% в настоящее время, что говорит о росте эффективности атомной энергетики. Рассматривая прирост мощностей АЭС, можно отметить, что странами, активно занимающимися развитием атомной энергетики, являются Китай, Индия и Россия. Мощности АЭС Китая с 2008 г. по 2035 г. вырастут почти в 13 раз (с 9 ГВт до 106 ГВт), Индии- почти в 7 раз (с 4,1 до 28 ГВт). Прирост мощностей АЭС в России за прогнозный период планируется в объеме 122% (с 23,2 ГВт в 2008 г.до 51,5 ГВт в 2035 г.).

Другим важным направлением производства электроэнергии являются ВИЭ. Производство электроэнергии на основе ВИЭ в настоящее время является одним из самых быстро развивающихся направлений электроэнергетики. Серьезным препятствием для строительства таких генерирующих мощностей является высокая стоимость проектов и их колебательный характер работы, однако это не останавливает страны перед развитием этого сектора электроэнергетики: темп прироста объемов произведенной электроэнергии на основе ВИЭ в прогнозном периоде планируется на уровне 3,1% в год. Из 4600 ТВт-ч прогнозируемой произведенной электроэнергии на основе ВИЭ к 2035 г. 55% будет произведено на ГЭС и 27% на ВЭС. В последние десять лет очень возросла важность энергии ветра: установленные мощности ВЭС выросли с 18 ГВт на 2001 г. до 121 ГВт в 2009. Очевидно, тенденция наращивания ветровых мощностей продолжится и в будущем. Правительства многих стран мира уже обнародовали меры, направленные на развитие возобновляемой энергетики. Евросоюз планирует, что в 2020 году на долю ВИЭ будет приходиться 20% всех объемов генерации; целью США является 10-20% производства из ВИЭ, тогда как Китай рассчитывает к 2020 году получать из них 100 ГВт энергии.

Даже в условиях кризиса и сокращения деятельности многих отраслей, производство электроэнергетики осталось практически на прежнем уровне, а в некоторых странах даже выросло. Электроэнергетика является важным разделом ТЭК любой страны и всего мира, и поэтому к 2035 г. ожидается увеличение объемов произведенной электроэнергии. С учетом описанных трендов мы также можем ожидать роста цен на электроэнергию.

Страница 3 из 3

Развитие ЕЭС России осложняется рядом проблем, требующих своего решения в перспективный период.
Общий экономический кризис и перестройка финансовой системы страны затронули и электроэнергетику. Переход на самофинансирование при государственном регулировании тарифов на электроэнергию резко ограничил финансовые ресурсы электроэнергетики. Объемы инвестиций в отрасль сократились с 1990 по 1998 г. в 3 раза. В результате темпы ввода мощностей за 1991-1998 гг. снизились до 1,5 млн. кВт, а среднегодовые вводы электрических сетей за последние 15 лет уменьшились в 3 раза.

Одну из серьезнейших проблем в энергетике представляет старение основных фондов. В ОЭС России находится в эксплуатации 30 млн. кВт генерирующего оборудования, достигшего предельных сроков наработки. В 2010 г. объемы устаревшего оборудования составят порядка 110 млн. кВт (из них ТЭС - 75 млн., ГЭС - 25 млн., АЭС - 8,4 млн. кВт), т.е. около 50 % установленной мощности электростанций. Нарастание объемов оборудования электростанций, выработавшего свой парковый ресурс, намного превышает темпы вывода его из работы и обновления. Эта проблема стоит в электрических и тепловых сетях. Уже сейчас 5 тыс. км ВЛ 110-220 кВ и подстанций общей мощностью 8 млн. кВ-А подлежат полной замене. К 2010 г. потребуется реконструкция 20 тыс. км ВЛ 110 кВ и выше. Проблема технического перевооружения затрагивает основы надежности и живучести электроэнергетики всех регионов страны и Единой энергетической системы России в целом.
При сохранении существующего уровня инвестиций в электроэнергетику и большом объеме устаревшего оборудования уже с 2005 г, может начаться неуправляемое выбытие электромощностей и электросетевых объектов и, как результат, резкое снижение надежности функционирования ЕЭС и электроснабжения потребителей.
Важнейшей проблемой развития энергетики является внедрение современного эффективного оборудования с высокими технико- экономическими и экологическими параметрами, в том числе и для решения задач технического перевооружения. Необходимо ускоренное внедрение высокоэкономичных парогазовых и газотурбинных технологий на базе появляющегося отечественного оборудования, расширение связей с зарубежными фирмами по производству оборудования на совместных предприятиях, создание экологически чистых энергоблоков на твердом топливе, оборудованных котлами с циркулирующим кипящим слоем, реакторов АЭС нового поколения, отвечающих международным стандартам безопасности.
Проблемой ЕЭС России является частичная энергетическая зависимость отдельных регионов от транзита электроэнергии через энергосистемы других государств (Калининградская, Псковская, Омская энергосистемы).
Из-за недостаточной компенсации зарядной мощности линий 750 кВ - 75, при рекомендуемых 100-110 %, и 500 кВ - 42 против 80- 100% острейшей проблемой функционирования электрических сетей в последние годы является повышение рабочего напряжения в сетях 750, 500 и 330 кВ в ряде районов ЕЭС России, иногда до опасных для оборудования значений, весной-летом в ночные часы и в часы дневного провала нагрузок.
Появление вынужденных неоптимальных режимов работы электростанций, увеличение реверсивных перетоков мощности по электрическим сетям привели к повышению относительных потерь электроэнергии. В 1998 г. потери электроэнергии в электрических сетях Российской Федерации составили 90,3 млрд. кВт-ч, или 12,2% отпущенной электроэнергии в сеть, против 8,35 % в 1991 г. Возросла доля коммерческих потерь.
Главной текущей проблемой отрасли является низкий уровень платежей потребителей за отпущенную им электрическую и тепловую энергию.
Перспективы развития ЕЭС России. Основными задачами развития ЕЭС России в первую очередь являются:
сохранение интеграции электроэнергетических систем регионов России независимо от форм собственности и производственно-организационной структуры в электроэнергетике;
обеспечение эффективного использования топливно-энергетических ресурсов регионов страны с учетом экологических требований;
обеспечение эффективного функционирования ФОРЭМ, гарантирующего надежность поставок энергии энергодефицитным районам.

В разработанной «Схеме развития ЕЭС и ОЭС России на период до 2010 г.», в увязке с основными стратегическими направлениями развития топливно-энергетического комплекса страны, в «Энергетической стратегии России» и «Стратегии развития электроэнергетики России на период до 2015 г.», определены направления развития генерирующих источников и основной электрической сети ЕЭС и ОЭС России на период до 2010 г. в условиях формирования и функционирования общероссийского и региональных рынков мощности и электроэнергии; разработаны предложения по экспорту электроэнергии из России, дана оценка потребности электростанций ЕЭС и ОЭС России в топливе в условиях формирования рынка топливных ресурсов и воздействия электроэнергетики на окружающую среду; уточнена потребность в инвестиционных ресурсах для развития ЕЭС и ОЭС России и дана оценка перспективных тарифов на поставки мощности и электроэнергии на оптовом рынке для регулируемой и конкурентной форм организации рынка.
В Схеме было рассмотрено несколько вариантов развития электроэнергетики России на период до 2010 г., которые соответствуют различным вариантам развития экономики страны, и как следствие, различным вариантам спроса на электроэнергию, а также учитывают возможные изменения условий развития отрасли в перспективе. При максимальном варианте спроса на электроэнергию (1127 млрд. кВт-ч в 2010 г.) предполагается, что уровень электропотребления 1990 г. (1074 млрд. кВт-ч) по России будет Достигнут к 2008 г., при среднем и минимальном вариантах спроса (1025 и 930 млрд. кВт-ч в 2010 г.) - за пределами 2010 г.
Кроме того, в Схеме был рассмотрен «вариант максимального демонтажа устаревшего оборудования тепловых электростанций», в котором после 2000 г. все оборудование ТЭС, отработавшее свой ресурс, порядка 60 млн. кВт, подлежит демонтажу с последующей заменой на новое прогрессивное оборудование. В остальных, рассмотренных в Схеме вариантах техническое перевооружение ТЭС в период до 2010 г. осуществляется как путем демонтажа устаревшего оборудования (25 млн. кВт) и замены его на новое (19 млн. кВт), так и продления срока службы оборудования (48 млн. кВт). При этом демонтаж принимался для устаревшего оборудования ТЭС на низкие параметры пара, а продление ресурса службы для оборудования высокого давления (в том числе для конденсационного оборудования 13 МПа и выше и теплофикационного оборудования 9 МПа и выше).
Масштабы вводов генерирующих мощностей в период до 2010 г. в зависимости от рассматриваемых вариантов оцениваются в 32 млн. кВт в варианте, соответствующем минимальному уровню электропотребления, до 100 млн. кВт - в варианте максимальной замены оборудования, отработавшего свой ресурс.
Развитие генерирующих мощностей в рассматриваемой перспективе связано, в первую очередь, с проблемами обновления выработавших свой расчетный ресурс энергомощностей, повышением эффективности энергопроизводства за счет внедрения современных технологий (ПГУ, ГТУ, чистые угольные энергоблоки), повышением безопасности девствующих и новых АЭС.
Основным направлением развития гидроэнергетики в перспективный период является окончание строительства уже начатых ГЭС и техническое перевооружение действующих ГЭС. К гидроэлектростанциям, имеющим значительный строительный задел и соответственно возможности ускоренного ввода, относятся: Ирганайская, Зарамагская, Зеленчукские ГЭС (ОЭС Северного Кавказа), ГЭС на р. Кемь (ОЭС Северо-Запада), Богучанская ГЭС (ОЭС Сибири), Бурейская и Нижнебурейская ГЭС (ОЭС Востока), Вилюйская ГЭС-3 (Западная Якутия), Усть-Средиеканская ГЭС (Магадан).
Вводы мощности кв АЭС в этот период связаны с заменой Демонтируемых энергоблоков на Ленинградской, Кольской, Курской, Нововоронежской, Белоярской АЭС на энергоблоки нового поколения, завершением строительства Курской (блок № 5) и Тверской АЭС
(блок № 3), вводом в 2010 г. первого блока Приморской АЭС на Дальнем Востоке в максимальном варианте электропотребления.
Масштабы развития тепловых электростанций на органическом топливе будут в значительной мере определяться ростом спроса на электро- и теплоэнергию, возможностями развития топливной базы электростанций, постоянным ростом объемов устаревшего оборудования и принятой стратегией технического перевооружения, темпами развития отечественного машиностроения для производства эффективного и экологически чистого оборудования.
В условиях преимущественного использования природного газа наиболее целесообразно обеспечение газом ТЭЦ, особенно комбинированных парогазовых установок (ПГУ-ТЭЦ), что позволит наиболее эффективно решать одновременно вопросы электро- и теплопотребления.
В максимальном варианте рекомендованы вводы конденсационной мощности на следующих крупных ГРЭС. В ОЭС Северо-Запада - Псковская ГРЭС (окончание строительства); в ОЭС Центра - Каширская ГРЭС-4, Шатурская ГРЭС-5 и Конаковская ГРЭС (замена энергоблоков), Щекинская и Ивановская ГРЭС (расширение), Петровская и Нижневолжская ГРЭС на газе (новые); в ОЭС Поволжья - Заинская ГРЭС (замена) и Мордовская ГРЭС на КАУ (новая); в ОЭС Северного Кавказа - Краснодарская ГРЭС на газе (новая); в ОЭС Урала - Нижневартовская ГРЭС (энергоблок № 2) и Пермская ГРЭС (№ 4), Сургутская ГРЭС-1 (замена четырех энергоблоков); в ОЭС Сибири - Березовская ГРЭС-1 (окончание 1 очереди), Харанорская ГРЭС (ввод двух блоков), Гусиноозерская ГРЭС (доведение до проектной мощности), Красноярская ГРЭС-2 и Беловская ГРЭС (замена).
Российская электроэнергетика как сегодня, так и на перспективу ориентирована на газоугольную стратегию.
При принятой стратегии развития энергетики России структура установленной мощности электростанций в рассматриваемый период существенно не меняется: доля ГЭС остается на существующем уровне-21, несколько снижается доля АЭС - с 11 (1997 г.) до 10 %, доля ТЭС составит 68-69 %. При этом возрастет доля ПГУ и ГТУ (на КЭС и ТЭЦ) с 0,6 в отчетном 1997 г. до 8,1 % суммарной мощности в 2010 г.
В новых экономических условиях роль основной электрической сети ЕЭС России возрастает, так как она является базой для создания оптового рынка мощности и электроэнергии в России, который позволит в перспективе повысить конкуренцию производителей электроэнергии и снизить стоимость электроэнергии для потребителей.
На рассматриваемую перспективу высшим классом напряжения для сетей переменного тока останется 1150 кВ. Сеть 750 кВ будет развиваться в европейской части ЕЭС для повышения надежности выдачи мощности АЭС в ОЭС Северо-Запада и Центра, а также при Необходимости для усиления межсистемных связей России с Беларусью и Украиной.
Сети 500 кВ будут использованы для присоединения ОЭС Востока к ЕЭС России, усиления основных связей в ОЭС Северного Кавказа, Центра, Средней Волги, Урала, Сибири, Востока, а также для развития межсистемных связей между отдельными ОЭС.
Сеть 330 кВ продолжает выполнять системообразующие функции в ряде энергосистем и ОЭС европейской части России и обеспечивать, выдачу мощности крупных электростанций. В дальнейшем, по мере развития сети 750 кВ, к сети 330 кВ перейдут распределительные функции.
В период до 2000 г. развитие основной электрической сети связано, в первую очередь, с обеспечением энергетической независимости отдельных регионов России (энергосистем Псковской и Омской обл.), обеспечением надежной выдачи мощности электростанций и надежного электроснабжения потребителей, обеспечения экспорта электроэнергии в Финляндию.
В этот период рекомендуется сооружение основных электросетевых объектов, по которым имеются строительные или проектные заделы.
В период 2001-2010 гг. для усиления межсистемных связей в соответствии с требованиями к их пропускной способности предлагается:
создание прямой сильной электрической связи между восточной и европейской частями ЕЭС России путем сооружения линий электропередачи 500 и 1150 кВ, проходящих по территории России. Кроме сокращения потребности в генерирующей мощности и экономии затрат на топливо, они укрепят сетевую структуру ЕЭС, оказавшуюся в значительной мере нарушенной вследствие получения политической независимости Казахстаном. Сооружение первого участка ВЛ 1150 кВ Сибирь - Урал предлагается по трассе Алтай - Карасук - Омск - Курган - Челябинск;
усиление межсистемного транзита 500 кВ ОЭС Средней Волги - ОЭС Центра (Волгоградская энергосистема) - ОЭС Северного Кавказа (строительство ВЛ Балаковская АЭС - Курдюм - Фролово - Шахты), который позволит повысить надежность электроснабжения потребителей региона Северного Кавказа и создать основу для транспорта электроэнергии из региона Поволжья в страны Черноморского региона;
усиление системообразующих связей 500 кВ между ОЭС Урала и Средней Волги (за счет строительства ВЛ 500 кВ Северная - Вятка и Газовая - Преображенская - Красноармейская) с целью повышения пропускной способности межсистемного сечения и обеспечения сокращения за трат на ввод генерирующей мощности;
сооружение ВЛ 500 кВ Чита - Могоча - Зейская ГЭС, которая позволит увеличить обмены мощностью и электроэнергией между ОЭС Сибири и ОЭС Востока.
Для обеспечения надежного и устойчивого функционирования ЕЭС России объемы ввода электросетевых объектов 330 кВ и выше в период до 2010 г должны составить не менее 12-20 тыс. км линий электропередачи и 47,5-80 тыс. MB A мощности подстанций в зависимости от рассматриваемых вариантов.
При этом необходимые объемы капитальных вложений по вариантам развития ЕЭС России на период до 2010 г составят от 100 до 180 млрд. дол. США.
Важнейшее значение для развития электроэнергетики России имеет расширение интеграции ЕЭС России с энергосистемами зарубежных стран. В период до 2010 г. предполагается значительное увеличение экспорта электроэнергии.
В страны СНГ и Балтии передача электроэнергии может быть Значительно увеличена за счет использования пропускной способности существующих межгосударственных связен, которая составляет свыше 8 млн. кВт, что позволяет увеличить экспорт электроэнергии в 2,5-3 раза без дополнительного сетевого строительства.
Особый интерес для России в части возможного увеличения экспорта электроэнергии представляют северные страны, входящие в объединение NORDEL, с которыми Россия граничит непосредственно, и страны Центральной и Восточной Европы, входящие в объединение CENTREL, а также Болгария и Румыния, в которые до 1991 г. поставлялась электроэнергия в больших объемах из России, Украины и Молдовы и с которыми сохранились электрические связи 750-400-220 кВ.
В Финляндии в период до 2010 г. планируется достаточно большой рост электропотребления (30 млрд. кВт-ч за 15 лет), часть которого Должна покрываться импортом электроэнергии. Увеличение передачи из России может быть обеспечено при расширении вставки постоянного тока (ВПТ) в Выборге 2X355 МВт и сооружении новой связи 330/400 кВ с ВПТ 600 МВт Колэнерго - Финляндия. Всего в сторону Финляндии может передаваться от 6,0 млрд. кВт ч. Возможна передача части этой энергии транзитом в Швецию, в которой может возникнуть потребность импорта электроэнергии при выводе из эксплуатации АЭС.
В Норвегию до 2005 г. возможно увеличение экспорта до 0,3 млрд. кВт-ч от генераторов Борисоглебской ГЭС. В период до 2010 г может рассматриваться сооружение передачи 330/400 кВ Мурманск - Киркенесс с ВПТ в Киркенессе мощностью 200 -250 МВт и экспортом в Норвегию до 1,0 млрд. кВт-ч.
В страны Центральной и Восточной Европы; Польшу, Чехию, Словакию, Венгрию, Румынию, Болгарию - экспорт электроэнергии из России возможен только транзитом через электрические сети Украины и Молдовы с использованием существующих связей 750 - 400 - 220 кВ. Совместная работа всех перечисленных энергосистем может быть восстановлена при переходе на синхронную работу объединений UCPTE - CENTREL - ОЭС СНГ - ЕЭС России или при сооружении В1П на связях ОЭС Украины с энергосистемами соседних стран. Переход к синхронной работе потребует достаточно продолжительного времени, поэтому на первом этапе может рассматриваться установка одной - двух ВПТ мощностью по 600 МВт на ПС 750 кВ Западно- Украинская, Жешув (Польша) или Альбертирша (Венгрия). По расчетам на уровне 2005 г. возможна передача из России до западных границ Украины 1000 - 1200 МВт с одновременной передачей па Украину 800 - 1200 МВт. При необходимости увеличения потоков мощности потребуется усиление сетей на Украине. Экспорт электроэнергии в страны Центральной и Восточной Европы может составить от 2,0 до 6 млрд. кВт ч.

В страны Западной Европы, например Германию и Австрию, экспорт электроэнергии возможен через ОЭС Балтии, Беларуси и Украины и энергосистемы стран CENTREL. На северо-западе ОЭС Балтии и Беларуси не имеют тесных связей с западными странами.

В плане решения этой проблемы ведутся переговоры по созданию транзита Россия - Беларусь - Польша. Интернациональный коллектив специалистов России, Германии, Беларуси, Польши и стран Балтии изучает технико-экономические аспекты создания многоподстаицион- ной передачи постоянного тока ± 500 кВ Россия - Беларусь - Литва - Калининград - Польша - Германия (VEAG и PreussenEleklra) протяженностью около 2000 км. Пропускная способность передачи на первом этапе должна составить 2000 и на втором - 4000 МВт Начальную подстанцию в России намечено разместить а районе Смоленской ГРЭС. Предполагается сооружение первой очереди к 2010 г. с передачей из России в европейские страны до 10,0 млрд. кВт-ч,
В страны Ближнего Востока - Турцию, Иран экспорт электроэнергии из России возможен через энергосистемы Закавказских стран. При усилении связи с Закавказьем, с сооружением на уровне 2005 г. ВЛ 500 кВ Сочи - Сухуми, в Турцию может передаваться до 3 млрд. кВт-ч. Может также рассматриваться сооружение подводной кабельной линии через Черное море Джубга - Самсун протяженностью 360 км напряжением ±400-600 кВ с передачей 1000 МВт и 5,0-6,0 млрд. кВт-ч. Передача в Иран может осуществляться в небольших количествах - 0,2-0,3 млрд. кВт-ч через Азербайджан. Ключевым звеном в этой проблеме является восстановление полноценной параллельной работы ЕЭС России и ОЭС Закавказья на основе обеспечения надежности работы существующей горной ВЛ 500 кВ Центральная - Ингури ГЭС и завершения строительства В Л 500 кВ, проходящей по Черноморскому побережью.
Из восточной части России возможен экспорт в страны Азии - Монголию, Китай, Северную и Южную Корею, Японию. В Китае в связи с устойчивым ростом экономики ряд районов является дефицитным по электроэнергии, что предполагает возможность экспорта из России. Однако до последнего времени передача в Китай осуществлялась только из Амурской энергосистемы в небольших объемах в рамках приграничной торговли. В настоящее время выполняется технико-экономическое обоснование сооружения передачи Братск - Пекин ±600 кВ протяженностью 2500 км (через Монголию) с передачей мощности 2500 МВт и электроэнергии 5,0-18,0 млрд. кВт-ч. Если учесть высокую стоимость такой передачи, значительные объемы работ, при своевременном решении спорных проблем она может быть введена в работу не ранее 2004 - 2005 гг. Из ОЭС Востока возможно дальнейшее развитие приграничной торговли с передачей электроэнергии от подстанций 220-110 кВ, расположенных в зоне Транссибирской железной дороги, или сооружение линий большой пропускной способности, например ВЛ 500 кВ Бурейская ГЭС - Харбин. Энергетический потенциал ОЭС Сибири и возможности его развития в ОЭС Востока позволяют рассматривать экспорт в Китай в достаточно широком диапазоне.

Япония не располагает собственными топливно-энергетическими ресурсами, а растущая потребность в электроэнергии позволяет рассматривать Японию в качестве потенциального импортера электроэнергии из России.
Возможные объемы экспорта электроэнергии из России на 2005- 2010 гг. могут составить соответственно 38 и 45 млрд. кВт-ч в вероятном, 43 и 90 млрд. кВт-ч - в максимальном варианте.
В вероятном варианте учитываются ограничения в топливообеспечении электростанций в ЕЭС России, ограниченность средств на сооружение новых межгосударственных связей, платежеспособность стран-импортеров.
Анализ надежности работы ЕЭС России подтверждает эффективность предусматриваемых мер по развитию основной системообразующей сети ЕЭС в период до 2010 г. и по обеспечению надежности параллельной работы энергосистем и надежности электроснабжения потребителей.
Оценка величины межсистемного эффекта при переходе от изолированной работы энергосистем к работе в составе ЕЭС России показала, что изоляция энергосистем друг от друга приносит огромный ущерб - увеличивается потребность в установленной мощности приблизительно на 7 ГВт, увеличиваются затраты на топливо на 82 млн., ежегодные издержки возрастают на 330 млн. дол. в год.
Переходя к экономической части работы, следует отметить, что полученные особенно на перспективу 2005 - 2010 гг. прогнозные показатели весьма условны и могут характеризовать в большей мере лишь общие закономерности и тенденции развития. Это связано с неопределенностью информации относительно общего экономического положения России в перспективе.
Расчет капитальных вложений производился в основном пообъектно, особенно в части задельных и новых электрических станций. Учитывались также объемы модернизации и реконструкции энергетических мощностей, линии Электропередачи, подстанции, тепловые сети и другие потребности, включая природоохранные мероприятия.
Наибольшая доля инвестиций в период до 2010 г. (порядка 70 %) приходится на ввод мощности электростанций.
Структура источников инвестиций рассмотрена в двух вариантах. Первый - инвестиции полностью покрываются за счет собственных средств электроэнергетики, прежде всего амортизации (с учетом будущей переоценки основных фондов) и прибыли. Однако анализ показал, что более приемлемым является второй вариант, когда собственные средства РАО и АОэнерго составляют около 60%. Остальная часть средств должна быть получена за счет сторонних источников.
Реализация намеченных в Схеме направлений развития ЕЭС России сдерживается ввиду отсутствия закрепленных на длительный период решений по источникам формирования инвестиционных средств в отрасли.
Схема предлагается в качестве технической основы для поэтапного решения проблем обеспечения функционирования и развития электроэнергетики России.

Основные проблемы развития электроэнергетики России связаны: с технической отсталостью и износом фондов отрасли, несовершенством хозяйственного механизма управления энергетическим хозяйством, включая ценовую и инвестиционную политику, ростом неплатежей энергопотребителей. В условиях кризиса экономики сохраняется высокая энергоемкость производства.

В настоящее время более 18% электростанций полностью выработали свой расчетный ресурс установленной мощности. Очень медленно идет процесс энергосбережения. Правительство пытается решить проблему разных сторон: одновременно идет акционирование отрасли (51% акций остается у государства), привлекаются иностранные инвестиции и начала внедряться программа по снижению энергоемкости производства.

В качестве основных задач развития российской энергетики можно выделить следующее: 1) снижение энергоемкости производства; 2) сохранение единой энергосистемы России; 3) повышение коэффициента используемой мощности энергосистемы; 4) полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга; 5) скорейшее обновление парка энергосистемы; 6) приведение экологических параметров энергосистемы к уровню мировых стандартов.

Сейчас перед отраслью стоит ряд проблем. Важной является экологическая проблема. На данном этапе, в России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз.

Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что экологический фактор долгое время учитывался крайне мало или вовсе не учитывался. Наиболее не экологична угольная ТЭС, вблизи них радиоактивный уровень в несколько раз превышает уровень радиации в непосредственной близости от АЭС. Использование газа в ТЭС гораздо эффективнее, чем мазута или угля; при сжигании 1 тонны условного топлива образуется 1,7 тонны углерода против 2,7 тонны при сжигании мазута или угля. Экологические параметры, установленные ранее не обеспечивают полной экологической чистоты, в соответствии с ними строилось большинство электростанций.

Новые стандарты экологической чистоты вынесены в специальную государственную программу “Экологически чистая энергетика”. С учетом требований этой программы уже подготовлено несколько проектов и десятки находятся в стадии разработки. Так, существует проект Березовской ГРЭС-2 с блоками на 800 мВт и рукавными фильтрами улавливания пыли, проект ТЭС с парогазовыми установками мощностью по 300 мВт, проект Ростовской ГРЭС, включающий в себя множество принципиально новых технических решений. Отдельно рассмотрим проблемы развития атомной энергетики.

Атомная промышленность и энергетика рассматриваются в Энергетической стратегии (2005-2020гг.) как важнейшая часть энергетики страны, поскольку атомная энергетика потенциально обладает необходимыми качествами для постепенного замещения значительной части традиционной энергетики на ископаемом органическом топливе, а также имеет развитую производственно-строительную базу и достаточные мощности по производству ядерного топлива. При этом основное внимание уделяется обеспечению ядерной безопасности и, прежде всего безопасности АЭС в ходе их эксплуатации. Кроме того, требуется принятие мер по заинтересованности в развитии отрасли общественности, особенно населения, проживающего вблизи АЭС.

Для обеспечения запланированных темпов развития атомной энергетики после 2020 г., сохранения и развития экспортного потенциала уже в настоящее время требуется усиление геологоразведочных работ, направленных на подготовку резервной сырьевой базы природного урана.

Максимальный вариант роста производства электроэнергии на АЭС соответствует как требованиям благоприятного развития экономики, так и прогнозируемой экономически оптимальной структуре производства электроэнергии с учетом географии ее потребления. При этом экономически приоритетной зоной размещения АЭС являются европейские и дальневосточные регионы страны, а также северные районы с дальнепривозным топливом. Меньшие уровни производства энергии на АЭС могут возникнуть при возражениях общественности против указанных масштабов развития АЭС, что потребует соответствующего увеличения добычи угля и мощности угольных электростанций, в том числе в регионах, где АЭС имеют экономический приоритет.

Основные задачи по максимальному варианту: строительство новых АЭС с доведением установленной мощности атомных станций до 32 ГВт в 2010 г. и до 52,6 ГВт в 2020 г.; продление назначенного срока службы действующих энергоблоков до 40-50 лет их эксплуатации с целью максимального высвобождения газа и нефти; экономия средств за счет использования конструктивных и эксплуатационных резервов.

В этом варианте, в частности, намечена достройка в 2000-2010 годы 5 ГВт атомных энергоблоков (двух блоков - на Ростовской АЭС и по одному - на Калининской, Курской и Балаковской станциях) и новое строительство 5,8 ГВт атомных энергоблоков (по одному блоку на Нововоронежской, Белоярской, Калининской, Балаковской, Башкирской и Курской АЭС). В 2011 - 2020 гг. предусмотрено строительство четырех блоков на Ленинградской АЭС, четырех блоков на Северо-Кавказской АЭС, трех блоков Башкирской АЭС, по два блока на Южно-Уральской, Дальневосточной, Приморской, Курской АЭС -2 и Смоленской АЭС - 2, на Архангельской и Хабаровской АТЭЦ и по одному блоку на Нововоронежской, Смоленской и Кольской АЭС - 2.

Одновременно в 2010 - 2020 гг. намечено вывести из эксплуатации 12 энергоблоков первого поколения на Билибинской, Кольской, Курской, Ленинградской и Нововоронежской АЭС.

Основные задачи по минимальному варианту - строительство новых блоков с доведением мощности АЭС до 32 ГВт в 2010 г. и до 35 ГВт в 2020 г. и продление назначенного срока службы действующих энергоблоков на 10 лет.

Основой электроэнергетики России на всю рассматриваемую перспективу останутся тепловые электростанции, удельный вес которых в структуре установленной мощности отрасли составит к 2010 г. 68%, а к 2020 г. - 67-70% (2000 г. - 69%). Они обеспечат выработку, соответственно, 69% и 67-71% всей электроэнергии в стране (2000 г. - 67%).

Учитывая сложную ситуацию в топливодобывающих отраслях и ожидаемый высокий рост выработки электроэнергии на тепловых электростанциях (почти на 40-80 % к 2020 г.), обеспечение электростанций топливом становится в предстоящий период одной из сложнейших проблем в энергетике.

Суммарная потребность для электростанций России в органическом топливе возрастет с 273 млн т у.т. в 2000 г. до 310-350 млн т у.т. в 2010 г. и до 320-400 млн т у.т. в 2020 г. Относительно не высокий прирост потребности в топливе к 2020 г. по сравнению с выработкой электроэнергии связан с практически полной заменой к этому периоду существующего неэкономичного оборудования на новое высокоэффективное, что требует осуществления практически предельных по возможностям вводов генерирующей мощности. В высоком варианте в период 2011-2015 гг. на замену старого оборудования и для обеспечения прироста потребности предлагается вводить 15 млн кВт в год и в период 2016-2020 гг. до 20 млн кВт в год. Любое отставание по вводам приведет к снижению эффективности использования топлива и соответственно к росту его расхода на электростанциях, по сравнению с определенными в Стратегии уровнями.

Необходимость радикального изменения условий топливного обеспечения тепловых электростанций в европейских районах страны и ужесточения экологических требований обусловливает существенные изменения структуры мощности ТЭС по типам электростанций и видам используемого топлива в этих районах. Основным направлением должно стать техническое перевооружение и реконструкция существующих, а также сооружение новых тепловых электростанций. При этом приоритет будет отдан парогазовым и экологически чистым угольным электростанциям, конкурентоспособным в большей части территории России и обеспечивающим повышение эффективности производства энергии. Переход от паротурбинных к парогазовым ТЭС на газе, а позже - и на угле обеспечит постепенное повышение КПД установок до 55 %, а в перспективе до 60 % что позволит существенно снизить прирост потребности ТЭС в топливе.

Для развития Единой энергосистемы России Энергетической стратегией предусматривается:

  • 1) создание сильной электрической связи между восточной и европейской частями ЕЭС России, путем сооружения линий электропередачи напряжением 500 и 1150 кВ. Роль этих связей особенно велика в условиях необходимости переориентации европейских районов на использование угля, позволяя заметно сократить завоз восточных углей для ТЭС;
  • 2) усиление межсистемных связей транзита между ОЭС (объединенной энергетической системой) Средней Волги - ОЭС Центра - ОЭС Северного Кавказа, позволяющего повысить надежность энергоснабжения региона Северного Кавказа, а также ОЭС Урала - ОЭС Средней Волги - ОЭС Центра и ОЭС Урала - ОЭС Северо-Запада для выдачи избыточной мощности ГРЭС Тюмени;
  • 3) усиление системообразующих связей между ОЭС Северо-Запада и Центра;
  • 4) развитие электрической связи между ОЭС Сибири и ОЭС Востока, позволяющей обеспечить параллельную работу всех энергообъединений страны и гарантировать надежное энергоснабжение дефицитных районов Дальнего Востока.

Альтернативная энергетика. Несмотря на то, что Россия по степени использования так называемых нетрадиционных и возобновляемых видов энергии находятся пока в шестом десятке стран мира, развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Ресурсный потенциал нетрадиционных и возобновляемых источников энергии составляет порядка 5 млрд. т условного топлива в год, а экономический потенциал в самом общем виде достигает не менее 270 млн. т условного топлива (рис. 2).

Пока все попытки использования нетрадиционных и возобновляемых источников энергии в России носят экспериментальный и полуэкспериментальный характер или в лучшем случае такие источники играют роль местных, строго локальных производителей энергии. Последнее относится и к использованию энергии ветра. Это происходит потому, что Россия еще не испытывает дефицита традиционных источников энергии и ее запасы органического топлива и ядерного горючего пока достаточно велики. Однако и сегодня в удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживание ее зачастую некому, «нетрадиционные» источники электроэнергии - наилучшее решение проблемы.

Намечаемые уровни развития и технического перевооружения отраслей энергетического сектора страны невозможны без соответствующего роста производства в отраслях энергетического (атомного, электротехнического, нефтегазового, нефтехимического, горношахтного и др.) машиностроения, металлургии и химической промышленности России, а также строительного комплекса. Их необходимое развитие - задача всей экономической политики государства.