Можно ли использовать винтовые сваи как заземление – требования к устройству. Заземление фундамента. Производственные здания, используемые в качестве заземляющих устройств

Гроза несет огромный разрушительный потенциал, обезопасить воздействия которого можно путем точных инженерных решений.С другой стороны, молниезащита зданий и сооружений, которая строится без учета расчетных параметров, не обеспечит своих функций и может стать непосредственной причиной аварийных ситуаций.

О разрушительных действиях молний

Видимой частью проявления молнии является прямой удар, который расщепляет вековые стволы деревьев, оплавляет металлические конструкции и является причиной возгорания.

Невидимые, но не менее опасные вторичные проявления молнии, такие как наведенные токи и появление высокого потенциала, визуально не проявляется, но не становятся менее опасными, поскольку разрушения, вызванные этими факторами, носят массовый характер.

Токи, вызванные грозовыми электромагнитными полями, являются причиной выхода со строя различных электроприборов. Наведенные токи и занос высокого потенциала, вызывают искрение, особо опасное в помещениях с взрывоопасной концентрацией взрывчатых веществ. При наличии дорогостоящего электрооборудования, ущерб от молнии будет значительным.

Некоторые критерии расчета защиты

1) Годовой показатель ожидаемого количества поражений молнией. Рассчитывается по эмпирической формуле, в которой задаются геометрические параметры защищаемого объекта и статистические данные среднегодового числа ударов молнии на площади в 1 кв. км.

2) Уровень молниезащиты зданий и сооружений определяется нормативными документами. Защитой от прямых попаданий и появления высоких потенциалов оборудуются строения I, II и III категорий.

3) Надежность защиты. Регламентируется нормами инструкций не менее 99,5% для зоны А и 95% для зоны Б.


Вывод

Расчет молниезащиты зданий и сооружений различного назначения, независимо от сложности объекта и характера производства, выполняется в соответствие с нормативными документами.

Применение расчетных методов позволит с большой степенью вероятности обезопасить строения от природных катаклизмов.

Разрабатывается как на стадии проектной так и рабочей документации.

Нормативные документы по проектированию молниезащиты:

  • РД 34.21.122-87 Инструкция по устройству молниезащиты зданий и сооружений.

Ответы на вопросы по молниезащите зданий и сооружений

В многоквартирном здании из монолитного железобетона высотой 92 метра в качестве контура заземления использован естественный заземлитель – проваренная арматура фундамента. Как спуски использована арматура монолитного железобетона, проваренная на всем протяжении, соединенная горизонтальными эквипотенциальными поясами через 20 метров. Обязательны ли внешние молниеприемные пояса на фасаде здания (облицован гранитом)? Возможна ли установка активного молниеприемника, который будет использовать выполненную систему молниеотводов (спусков)?

В случае использования арматуры железобетонных конструкций здания в качестве токоотводов при соединении горизонтальных и вертикальных элементов арматуры сваркой, как указано в приведенном примере, дополнительное выполнение наружных токоотводов, в т.ч. горизонтальных соединительных поясов, не требуется (см. «Инструкцию по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО-153-34.21.122-2003), п. 3.2.2.5, последний абзац. – М.: Издательство МЭИ, 2004 г.).

Если внешний молниеприемник является готовым заводским изделием, его установка и присоединение к системе токоотводов выполняются в соответствии с инструкцией изготовителя молниеприемника. При этом проектом каркаса здания, используемого в качестве системы токоотводов, должны быть предусмотрены необходимые присоединительные выпуски и устройства.

Если внешний молниеприемник должен быть изготовлен и установлен в соответствии с проектной документацией на молниезащиту объекта, его конструкция, крепление и соединения должны соответствовать п. 3.2.4 Инструкции СО-153-34.21.122-2003 и п. 3 «Инструкции по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87).

В здании высотой 7 м стоят дизель-генераторы; крыша двухскатная из шифера, по коньку крыши проложен неизолированный провод. Выхлопная труба от дизелей имеет высоту 1 м над крышей. Требуется ли для такого сооружения выполнять молниезащиту (однотросовую или стержневую)?

Защита вращающихся машин от грозовых перенапряжений является обязательной. Она выполняется на основе положений либо «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003), либо «Инструкции по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87). Использование провода, проложенного по коньку крыши, в качестве молниеприемника не является достаточным, так как высшая точка молниеприемника (и тросового, и стержневого) должна находиться выше выхлопной трубы дизелей, чтобы защитить выхлопную трубу от прямого поражения молнией.

Вблизи выводов обмотки генератора или на сборных шинах следует устанавливать аппараты защиты от перенапряжений: нелинейные ограничители перенапряжений (ОПН), вентильные разрядники, защитные емкости.

В настоящее время на нашем предприятии питание прожекторов, установленных на металлических мачтах, предназначенных для наружного освещения территории, выполнено кабельными линиями на тросовой подвеске от вводов осветительных сетей в здание. Прожекторные мачты оснащены молниеотводами. Законно ли требование инспектора Ростехнадзора выполнить питание прожекторов кабелем с заземленной металлической оболочкой или в металлической трубе, проложенным в земле на протяжении не менее 10 м, в целях защиты питающей линии от грозовых перенапряжений (он ссылается на п. 6.3.19 ПУЭ 6-го изд.)?

Если прожекторная мачта и линии электроснабжения прожекторов входят в зону защиты отдельно стоящего(щих) молниеотвода(дов), то дополнительные меры по их молниезащите не требуются. Если молниеприемник установлен на прожекторной мачте, то электропроводку к ней рекомендуется выполнять в соответствии с указаниями п. 4.2.141 ПУЭ 7-го изд. (ПУЭ 6-го изд. на вновь сооружаемые и реконструируемые электроустановки не распространяется).

При проектировании молниезащиты зданий обязательно ли следовать указаниям Инструкции СО 153-34.21.122-2003 (указания по расчету молниезащиты очень запутанные)? По какому документу классифицируется надежность защиты объекта и имеются ли разъяснения к инструкции?

К сожалению, в новой редакции «Инструкции по защите зданий, сооружений и промышленных коммуникаций» отсутствуют дополнительные пояснения и рекомендации, что в существенной степени затрудняет её использование при конкретном проектировании устройств молниезащиты. Не выделены финансовые средства для разработки справочного пособия (рекомендаций) для облегчения пользования новой редакцией Инструкции. Нет и документа, устанавливающего необходимый уровень надежности защиты от прямых ударов молнии для указанных в Инструкции проектируемых объектов.

Поэтому задачей проектной организации при кон- кретном проектировании объекта является определение необходимой надежности молниезащиты, исходя из технико-экономических соображений с учетом возможного ущерба при поражении объекта молнией.

Еще раз обращаем внимание организаций на то, что в соответствии с Федеральным законом № 184 «О техническом регулировании» ведомства вправе утверждать только документы рекомендательного характера, за исключением перечисленных в статье 5 упомянутого закона. Инструкция по молниезащите под действие этой статьи не подпадает. Приказ Минэнерго России от 30.06.2003 № 280 об утверждении «Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций» не содержит указания об отмене предыдущей редакции. Поэтому проектные организации вправе выполнять молниезащиту на основании положений предыдущей редакции Инструкции до подготовки и утверждения соответствующего технического регламента.

В связи с распространением различных видов радиосвязи, к нам, энергоснабжающей организации, часто обращаются за разрешением на установку различной аппаратуры на наших молниеотводах. В ПУЭ 6-го изд. по этому поводу есть лишь п. 4.2.143. Распространяется ли этот пункт на кабели, питающие аппаратуру связи и отходящие от них? Какие еще требования предъявляются к оборудованию, устанавливаемому на молниеотводах?

Правила устройства электроустановок не предусматривают возможность установки какой-либо аппаратуры на молниеотводах. Пункт 4.2.141 ПУЭ 7-го изд. рассматривает случай использования в качестве молниеотвода прожекторной мачты, который изначально предполагает необходимость подвода линии электропередачи для электроснабжения устройств освещения.

Установка каких-либо устройств на молниеотводах нормативно-техническими документами не запрещена. Однако следует учитывать высокую вероятность появления импульсного потенциала на молниеотводах при протекании по ним токов молнии и соответственно высокую вероятность повреждения аппаратуры, установленной на молниеотводе.

Госэнергонадзор Министерства энергетики России не рекомендует установку аппаратуры (в том числе радиосвязи) сторонних организаций на молниеотводах энергоснабжающих организаций. В случае такой установки защита от воздействий грозовых перенапряжений должна выполняться с учетом положений «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003) или «Инструкции по устройству молниезащиты зданий и сооружений (РД 34 21.122-87).

В каких документах указаны нормы на сопротивление заземлителей для грозозащиты зданий и сооружений?

В настоящее время руководящими документами по грозозащите являются «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», утвержденная приказом Минэнерго России от 30.06.2003 № 280, и «Инструкция по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87). Этими документами не предусматривается непосредственное нормирование значений сопротивлений заземлителей.

Основное назначение заземлителей – ограничение грозовых (импульсных) напряжений на металлических конструкциях и на оборудовании. На стадии проектирования нет возможности предсказать значения токов молнии и, следовательно, значения импульсных перенапряжений.

Поэтому упомянутые Инструкции не устанавливают значения сопротивлений заземлителей. Инструкцией РД 34.21.122-87 рекомендовался выбор конкретных конструкций заземлителей, исходя из возможных значений токов молнии в диапазоне от 5 до 100 кА.

В то же время в главах 2.4 (пп. 2.4.36, 2.4.41), 2.5 (п. 2.5.129), 4.2 (пп. 4.2.136, 4.2.138, 4.2.143, 4.2.156, 4.2.162, 4.2.165) ПУЭ 7-го изд. приведены конкретные значения сопротивлений заземлителей опор воздушных линий электропередачи и распределительных устройств.

Можно ли использовать профилированный стальной лист кровли 3-этажного административного здания в качестве молниеприемника при условии непрерывной электрической связи между листами и не устраивать молниеприемную сетку?

Можно. «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО-153-34.21.122-2003, п.3.2.1.2) предусматривает использование металлических кровель защищаемых объектов в качестве естественных молниеприемников при одновременном соблюдении следующих условий:

  • электрическая непрерывность между разными частями обеспечена на долгий срок;
  • толщина металла кровли составляет не менее 4 мм для железа, 5 мм для меди и 7 мм для алюминия, если необходимо предохранить кровлю от повреждения или прожога, и не менее 0,5 мм, если кровлю не обязательно защищать от повреждений и нет опасности воспламенения находящихся под кровлей горючих материалов;
  • кровля не имеет изоляционного покрытия. При этом слой антикоррозионной краски, или слой 0,5 мм асфальтового покрытия, или слой 1 мм пластикового покрытия не считается изоляцией;
  • неметаллические покрытия на/под металлической кровлей не выходят за пределы защищаемого объекта.

«Инструкция по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87, пп. 2.11, 2.25), действие которой не отменено, также предусматривает на зданиях и сооружениях с металлической кровлей использование кровли в качестве молниеприемника. Все выступающие над кровлей неметаллические элементы должны быть оборудованы молниеприемниками, присоединенными к металлу кровли. Должны быть соблюдены также требования пп. 2.6, 2.12, 2.13.

Возможно ли для вновь проектируемых (реконструируемых) жилых зданий не делать внешнюю молниезащитную систему? «Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций», утвержденная приказом Минэнерго, точного ответа не дает. Вопрос касается не высоких зданий и не зданий «в чистом поле». Хотя и для высотных зданий непонятен принцип устройства молниеприемника (если кровля не металлическая и не выступает за пределы дома). Может быть, существуют какие-то разъяснения?

Молниезащита от прямых ударов молнии и от ее вторичных воздействий для жилых зданий в современных условиях, когда эти здания насыщены достаточно дорогой электронной техникой, должна выполняться, как правило, во всех случаях. Уровень (надежность) защиты определяется экономическими соображениями. Для небольших зданий может быть принят IV уровень защиты, для высотных зданий может оказаться целесообразным (выгодным) и I уровень. Способ защиты – специально установленные молниеприемники, конструктивные элементы здания или их сочетание – определяется проектной организацией. Отсутствие молниезащиты даже небольших зданий желательно обосновывать, например, низкой грозовой деятельностью в отдельных регионах.

К сожалению, в настоящее время отсутствуют публикации, подробно разъясняющие положения данной Инструкции, на их подготовку необходимы определенное время и средства. За консультациями по содержанию Инструкции рекомендуется обращаться к ее составителям: ОАО «ЭНИН им. Кржижановского», ООО «ЭЛНАП».

Согласно пункту 4.2.172 ПУЭ, необходимо выполнить защиту от самопроизвольного смещения нейтрали путем установки в цепь открытого треугольника трансформатора напряжения резистора величиной 25 Ом, рассчитанного на ток 4 А. Есть ли необходимость в такой защите при использовании комплектного токопровода от генератора до повышающего трансформатора, а также при использовании комплектного генераторного элегазового распределительного устройства с разрядниками с нелинейной характеристикой и дополнительными конденсаторами между фазами и землей? Проблема существует из-за невозможности вывести нейтральные точки высоковольтных обмоток трансформатора напряжения за пределы кожуха распределительного устройства для установки трансформатора тока в нейтраль трансформатора напряжения для сигнализации и автоматического включения резистора в цепи открытого треугольника трансформатора напряжения (см. «Инструкцию по проверке транс-форматоров напряжения и их вторичных цепей». М.: СоюзТехЭнерго, 1979).

Сопротивление 25 Ом должно подключаться к выводам обмоток, соединенных в открытый треугольник, и может быть установлено вне оболочки экранированного токопровода. Установка трансформатора тока в нейтрали высоковольтных обмоток трансформатора напряжения не требуется.

Выполнение защиты от самопроизвольных смещений нейтрали в сетях с изолированной нейтралью требуется при соотношении 1,0–3,0 А емкостного тока замыкания на землю на один комплект трансформа- торов напряжения.

При установке трансформаторов напряжения типа НАМИ (антирезонансных) выполнение защиты от самопроизвольных смещений нейтрали не требуется.

В последнее время контролирующие органы стали требовать выполнения молниезащиты при проектировании жилых домов до 6 этажей. В РД 34.21.122-87 нет четких указаний на принадлежность данных объектов даже к третьей категории. Правомочны ли подобные требования и какой нормативной литературой пользоваться для проектирования молниезащиты?

Действующие в России нормы в области молниезащиты не содержат жестких указаний об обязательности защиты от поражений зданий молниями. Поэтому уровень надежности защиты здания от поражений, при отсутствии соответствующих указаний, определяется проектной организацией. В отношении жилых домов Инструкция СО 153-34.21.122-2003 предусматривает выполнение защиты с одним из четырех предлагаемых уровней надежности защиты от прямых ударов молнии. Учитывая насыщенность современных жилых зданий, даже небольших, сложной бытовой техникой, необходимость выполнения молниезащиты и уровень надежности защиты определяются прежде всего возможным ущербом при поражении здания молнией.

С учетом опасности последствий поражения молнией зданий: поражение людей; разрушение строительных конструкций; возникновение пожаров; повреждения, сбои в работе электронных приборов и потеря данных в системах информационных технологий – требование надзорных органов в отношении обязательности выполнения молниезащиты, как правило, представляется обоснованным.

При проектировании молниезащитных устройств допускается использование любой из двух редакций: «Инструкции по устройству молниезащиты зданий и сооружений» (РД 34.21.122-87) или «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003).

В качестве заземляющего контура котельной используется электрод (сталь круглая с медным покрытием), забитый в грунт на глубину 12 м. Рядом с котельной на расстоянии 3 м установлена дымоходная труба (h = 22 м), на которой смонтирован молниеприемник. Возможно ли использование данного электрода в качестве общего контура для заземления котельной и молниеприемника или для молниеприемника следует смонтировать свой контур?

Ответ имеется в п. 3.2.3.1 «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций». Заземляющие электроды заземлителя электроустановки котельной должны являться и составной частью заземлителя системы молниезащиты.

Возможно ли прохождение токоотводов по шахте лифта (молниезащита) жилого дома?

В лифтовых шахтах не должны прокладываться какие-либо коммуникации, не относящиеся к обеспечению работы лифтов. Рекомендации по выполнению токоотводов молниеприемников приведены в п. 3.2.2 «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003).

Безопасность здания - одна из главных характеристик, определяющих степень готовности объекта к сдаче в эксплуатацию. Одни из ключевых параметров электробезопасности при строительстве дома на сваях - правильно организованное заземление на свайный фундамент. Большинство специалистов рекомендуют при создании заземления применять в качестве проводника винтовые сваи.

Винтовое свайное основание и его заземление

Многие люди задаются вопросом: подходит ли свайный фундамент на винтовых сваях для организации надежного заземления? С одной стороны, глубокое расположение свайного фундамента - обстоятельство, указывающее в пользу создания надежной заземлительной системы.

Однако следует иметь в виду, что сваи до установки их в грунт зачастую обрабатывают лакокрасочными материалами, содержащими полиуретановые смолы. Особенность этих красок в том, что они - отличные диэлектрики. Хотя такие поверхности отличаются повышенной устойчивостью к коррозии (что продлевает срок эксплуатации металла), их нельзя использовать в заземлительном контуре.

Таким образом, заземление свайного фундамента на винтовых сваях - допустимый вариант только при отсутствии диэлектрических покрытий. Для защиты свай от коррозии нужны специальные токопроводящие краски или оцинкованное покрытие.

Обратите внимание! Некоторые строительные компании, желая сэкономить, используют для покраски свай дешевые виды лакокрасочных материалов. В результате покрытие обсыпается уже на этапе ввинчивания опоры в грунт.

Преимущества и недостатки винтовых опор

Винтовые сваи характеризуется целым рядом очевидных преимуществ:

  1. Нет нужды в масштабных земляных работах, так как сваи устанавливаются путем ввинчивания в грунт.
  2. Уменьшаются финансовые затраты на возведение объекта.
  3. Основание обладает достаточной прочностью.
  4. Продлеваются сроки эксплуатации свай, что обусловлено достаточной толщиной их стенок.
  5. Упрощается монтаж заземлительного контура.
  6. Качественное заземление обеспечивается благодаря обширным металлическим поверхностям.

В то же время имеются у винтовых опор и недостатки:

  1. Сварные швы - не лучшее решение для создания соединений при обустройстве заземления. Такие участки коррозируют прежде всего.
  2. Срок службы винтовых свай существенно сокращается, если поблизости присутствуют источники утечки тока в грунт - заземленная электроподстанция, железная дорога или сотовые передатчики.

Оцинкованные винтовые опоры

Для создания заземления на свайном фундаменте многие специалисты рекомендуют применять оцинкованные опоры. Производство защитных покрытий предполагает обработку базового металла по одной из двух возможных технологий:

  1. Холодная оцинковка поверхности. Антикоррозионный слой создается за счет нанесения цинкосодержащих лакокрасочных материалов.
  2. Горячая оцинковка. Метод состоит в нанесении на основу расплавленного цинка. Технология доступна к применению только в заводских условиях.

Винтовые опоры с покрытием, выполненным холодным способом, подходят по показателям электропроводимости, но совершенно неустойчивы к износу. Антикоррозионное покрытие быстро разрушается, часто еще при установке свай, так как происходит сильное трение поверхности опоры о грунт. Это обстоятельство делает такие покрытия нежелательным выбором для создания заземлительной системы.

У винтовых свай, обработанных по горячей технологии, недостаток, связанный с низкой износостойкостью, отсутствует. Антикоррозионный слой на таких опорах имеется как на внешних сторонах конструкции, так и на внутренних. Особенность горячей оцинковки такова, что покрытие обладает способностью к самовосстановлению на молекулярном уровне при небольших повреждениях. Единственный существенный недостаток горячей оцинковки - высокая стоимость работ, что резко сокращает круг возможных потребителей, особенно в частном строительстве.

Установка свайного основания с заземлением

Заземлительный контур для здания выполняется в виде замкнутой системы, по форме чаще всего как равносторонний треугольник. По вершинам углов располагают винтовые опоры, задействованные в качестве электродов (заземлительных устройств). Сваи вкручивают так, чтобы они находились ниже уровня промерзания грунта. Точная величина заглубления устанавливается, исходя из нормативов, принятых для того или иного региона. До начала работ производится проба грунта.

Промышленность выпускает определенные типоразмеры винтовых опор. Для заземления частного дома в наибольшей степени подходят сваи диаметром 57 миллиметров и длиной от 2 до 2,5 метра. Такие опоры применимы к условиям большей части регионов с умеренным климатом.

Работы выполняются в таком порядке:

  1. Для создания системы заземления подбирают площадку, удаленную от фундамента здания по крайней мере на 1 метр.
  2. Проводят разметку участка под дальнейшую установку винтовых свай. Дистанция между отмеченными точками должна быть равна длине опоры или превышать этот показатель.
  3. Намеченные точки на вершинах треугольника объединяют траншеей, выкопанной по периметру геометрической фигуры. Рекомендуемая глубина траншеи - не менее 50 сантиметров.
  4. По вершинам углов завинчивают опоры.
  5. После выполнения соединений (сваркой или, что более предпочтительно, болтами) конструкция превращается в замкнутый контур. В качестве соединителей используют какие-либо металлические изделия (лента, трубы и т. п.). Толщина металлической ленты не должна быть меньше 4 миллиметров. Соединения обрабатывают антикоррозийным составом.
  6. От одного из углов контура заземления копают еще одну траншею, направленную к распредщиту. В траншею кладут соединительный проводник.
  7. Проводник скрепляют гайкой с заранее приваренным к обвязочному контуру болтом. Оставшийся конец проводника стыкуют с главной шиной заземления распредщита.

Для уменьшения сопротивления заземлителя рекомендуется соединить его с естественными заземляющими предметами.

К числу таковых относят:

  • находящиеся в земле водопроводы и другие металлические трубные коммуникации (за исключением труб с горючими составами);
  • железобетонные и металлические конструкции зданий, находящиеся в прямом контакте с почвой;
  • обсадные трубы скважин.

Важно! До начала работ по установке заземления необходимо изучить ПУЭ (правила устройства электроустановок).

Проверка системы заземления

Когда монтаж закончен, нужно протестировать сопротивление контура заземления. В соответствии с правилами устройства электроустановок показатель сопротивления для электросети с напряжением 220 Вольт не должен превышать 30 Ом.

Замеры осуществляют в сухую погоду (в такие периоды наблюдается наибольшее сопротивление грунта). Если результаты измерений в пределах нормы, траншею с заземлительным контуром засыпают землей, после чего заземление готово к эксплуатации.

Прежде чем приступать к заземлению свайного фундамента, необходимо провести консультацию со специалистами по энергоснабжению, обслуживающими участок, на котором расположен фундамент. Мастера дадут рекомендации относительно правильного составления расчетов и подбора материалов, предоставят технические регламенты.

Ответ: Для заземления электроустановок следует использовать в первую очередь естественные заземлители. К ним относят: металлические части (арматуру) железобетонных конструкций, например фундаментов опор линий электропередачи и подстанций, фундаментов зданий; металлические подземные коммуникации (трубопроводы, броня и оболочки кабелей); некоторые наземные коммуникации (рельсовые пути) и др. Если естественные заземлители обеспечивают выполнение требований, предъявляемых к параметрам заземляющих устройств, то искусственные заземлители нужно применять, лишь когда необходимо уменьшить токи, протекающие по естественным заземлителям или стекающие с них в землю. Таким образом, в ряде случаев можно ограничиваться только использованием естественных заземлителей и отказаться от искусственных, что дает обоснованное снижение затрат материалов, труда, капиталовложений при монтаже и облегчает эксплуатацию заземляющих устройств. Уже накоплен опыт и известны результаты внедрения решений об отказе при определенных условиях от искусственных заземлителей и использовании конструкций промышленных зданий в качестве естественных заземлителей на некоторых предприятиях страны. При выполнении этих решений руководствуются документами Главэлектромонтажа Минмонтажспецстроя, согласованными с Госстроем (Технический циркуляр № 9-6-186/78 «Об использовании железобетонных фундаментов промышленных зданий в качестве заземлителей». Унифицированное задание строительным, проектным организациям по использованию металлических и железобетонных конструкций зданий в качестве заземляющих устройств). Технические требования, содержащиеся в унифицированном задании, являются временными, так как ведутся дальнейшие лабораторные и натурные исследования для их уточнения и возможного расширения применения естественных заземлителей. В настоящее время использование железобетонных фундаментов зданий в качестве заземлителей считается возможным лишь в грунтах влажностью не менее 3 % (из-за высокого электрического сопротивления бетона при меньшей влажности) и только при воздействии на фундаменты неагрессивных или слабоагрессивных грунтовых вод при отсутствии гидроизоляции или при защите поверхности фундаментов битумным (либо битумно-латексным) покрытием в соответствии с требованием СНиП 11-28-73. Железобетонные конструкции, находящиеся в средне- или сильноагрессивных средах, нельзя использовать в заземляющих устройствах, так как это может усилить коррозию конструкций. Не допускается также (до принятия решений по окончании исследований) использовать в заземляющих устройствах железобетонные конструкции (плиты, балки, фермы, колонны) с напрягаемой арматурой, а также металлические и железобетонные конструкции зданий, относимых к первой категории по молниезащите, для защиты этих зданий от прямых ударов молний. Однако и с учетом приведенных ограничений использование конструкций зданий в качестве заземляющих устройств дало на ряде объектов возможность полностью отказаться от выполнения искусственных заземлителей в грунте, резко сократить протяженность заземляющих проводников внутри зданий и получить существенный экономический эффект. Для использования в заземляющих устройствах все элементы металлических и железобетонных конструкций (фундаментов; колонн; ферм; стропильных, подстропильных и подкрановых балок) соединяют так, чтобы имелась непрерывная электрическая цепь по металлу. В железобетонных колоннах, кроме того, предусматривают закладные детали на каждом этаже здания для подсоединения заземляемого электрического и технологического оборудования. Имеющиеся в зданиях сварные, а также болтовые или заклепочные соединения металлических колонн, ферм и балок достаточны для непрерывности электрической цепи. В местах, где отдельные элементы металлоконструкций не имеют таких соединений, предусматривают приварку гибких перемычек сечением не менее 100 мм 2 . Сборные железобетонные фундаменты рекомендовано использовать в качестве заземлителей в тех случаях, когда имеется возможность металлического соединения арматуры отдельных блоков между собой. В свайных фундаментах соединяют вертикальную арматуру свай с арматурой ростверка или с арматурой фундаментных блоков электродуговой сваркой. Пространственные металлические каркасы колонн и стаканов фундаментов, а также арматурные сетки их подошв сваривают точечной сваркой на контактных машинах в соответствии с требованиями СН 393-78. При ручной электродуговой сварке закладных деталей и перемычек руководствуются также требованиями СН 102-76. Рекомендованы закладные детали (изделия) в виде отрезков из угловой стали 63X63X5 длиной 60 мм, привариваемые к арматуре и выступающие на поверхность бетона; металлические перемычки - в виде металлических стержней диаметром не менее 12 мм, привариваемых к закладным деталям. Указания приведенного выше циркуляра 9-6-186/78 согласованы с Главгосэнергонадзором. Институтом Сельэнергопроект они рекомендованы к применению и в сельскохозяйственном производстве. В циркуляре изложена методика расчета сопротивления фундаментов, используемых в качестве заземлителей и выравнивающих проводников. Аналогичные расчеты проведены институтом Энергосетьпроект для фундаментов опор ВЛ. Если на здании сооружается молниеприемная (молниезащитная) сетка, то ее соединяют перемычками в непрерывную электрическую сеть с колоннами, используемыми в качестве токоотводов, и с фундаментами, используемыми в качестве заземлителей. К сетке присоединяют все выступающие над кровлей металлические устройства - вентиляционные шахты и др. При использовании в качестве естественных заземлителей труб водопровода нужно устанавливать на водомерах и задвижках металлические перемычки. При ремонте, когда необходимо снять перемычку, заранее должна быть установлена другая перемычка. Присоединять заземляющие проводники от электрооборудования к линии водопровода нужно за водомером, определяя направление от потребителя воды. Использовать трубопровод канализации не разрешается, так как канализационные трубы не имеют надежного электрического контакта в стыках. На подстанциях естественными заземлителями могут являться железобетонные стойки под оборудование, закрепленные в грунте, и другие конструкции. Малое электрическое сопротивление имеют стойки, изготовленные из бетэла (бетон электротехнический). На линиях электропередачи в качестве естественных заземлителей на протяжении ряда лет используются железобетонные подножники и сваи в наиболее распространенных грунтах с удельным сопротивлением до 300 Ом-м, т. е. глинах, супесях и т. п. Систематические наблюдения и исследования показали, что не только в таких грунтах, но и в песчаных и скальных грунтах наблюдается постоянное увлажнение бетона за счет капиллярного подсоса влаги из прилегающих слоев земли, вследствие чего железобетонные фундаменты через несколько месяцев после их установки становятся естественными заземлителями с мало меняющимися в течение года значениями сопротивлений. Это дало основание рекомендовать их использование в грунтах с сопротивлением не только 300, но и до 1000 Ом-м, что дает экономию металла и затрат (табл. 1). Кроме описанных выше естественных заземлителей, ими могут служить и различные другие, например металлические трубопроводы для негорючих жидкостей, обсадные трубы артезианских колодцев. Таблица 1. Сокращение длины протяженных заземлителей при учете проводимости фундаментов опор, используемых в качестве естественных заземлителей в грунтах с эквивалентным удельным сопротивлением р от 500 до 1000 Ом-м
Напряжение воздушной линии кВ Тип опор р. Ом м Длина одного протяженного заземлителя. м
без учета фундамента с учетом фундамента
110-220 Одностоечные* на оттяжках 600-600 600-700 700-800 800-1000 20 25 30 35 10 15 20 30
110-330 Портальные железобетонные 500-700 700-800 800-1000 25 30 40 20 25 35
110-220 Одностоечные металлические 500-600 600-700 700-800 800-1000 20, 25 30 35 10 15 20 30
330-500 Одностоечные металлические 500-600 600-700 700-800 800-100 20 25 30 35 5 10 15 20
500-750 Анкерно-угловые трех- стоечные 500-650 650-800 800-1000 15 20 25 -2 _2 -2
500-750 Портальные на оттяжках 500-700 700-800 800-1000 20 25 30 10 15 20

*Одностоечные железобетонные опоры не включены, так как учет проводимости их подземной части в грунтах с Р=500-11000 Ом-м практически не влияет на значение сопротивления растекания.
**Прокладываются лишь перемычки между стойками опоры. Во всех случаях применения естественных заземлителей их конструкция должна отвечать условию, чтобы протекающие при коротком замыкании токи не превышали допустимых для каждого элемента заземлители. Это требование должно обеспечиваться в течение всего заданного числа лет эксплуатации электроустановки, т. е. и тогда, когда стальные элементы заземлители могут уменьшить свои размеры и сечение вследствие коррозии.

Кафтанчиково - село в Томском районе Томской области, административный центр Заречного сельского поселения. Население 1323 человека. Село расположено на левом берегу Томи, в 15 км от Томска, рядом с селом проходит автодорога M53. В 16 веке на реке «Томь» жили несколько групп татар во главе с князем Тояном. Князь Тоян подал челобитную царю Борису Годунову, в которой от имени «томских жителей» просил построить в низовьях реки «Томь» крепость и принять томских татар в русское подданство. На что Борис Годунов дал свое согласие и в 1604 году был сформирован отряд для строительства русской крепости. Летом 1604 года крепость была построена. В последствии население Томска росло. Здесь селились русские крестьяне-промысловики. В 1626 году проживало уже 531 семья. Жителей надо было снабжать хлебом, в 1605 году появились первые посевы зерновых, люди занялись сельским хозяйством. Селения Заречного сельского поселения являются одними из старейших в устье реки «Томь», которые возникли в период 1627 по 1630 года. Место для деревень было выбрано удачно: близост...

Заземление - это техническая система или комплекс мер, представляющие собой преднамеренное соединение зданий и электроустановок с землёй или её эквивалентом. Оно предназначено для снижения электрического напряжения прикосновения до значения, безопасного для человека. Главная цель устройства - защитить людей от поражения электрическим током, а электроустановки от повреждения. Меры по защите зданий, промышленного и бытового электрического оборудования предпринимаются в обязательном порядке. Защитное заземление позволяет исключить или снизить до минимума опасность травм и аварий.

Защитное заземление зданий многоэтажных домов, общественных, офисных и производственных строений имеет сложное устройство в силу их большого объёма и распределённости электрической схемы, оснащённости электроприборами и числа пользователей. Дополнительный фактор данного вида строительства заключается в том, что дома подвержены влиянию атмосферного электричества. В них необходимо провести монтаж заземления, чтобы обезопасить от прямого попадания либо вторичного воздействия молний. В таких случаях речь идёт о контурах заземления как части системы молниезащиты .

Назначение

Основное назначение - отведение электрического тока при помощи заземляющих шин и электродов оптимального сечения, перераспределение его в земляном грунте. Заземляющая схема осуществляет выравнивание потенциалов между установленными токоотводами и управление ими на территориях, где присутствуют люди. Защитное заземление является серьёзным фактором безопасности в быту и на производстве.

Основные показатели

Главный показатель, определяющий способность заземляющего устройства выполнять свои функции - сопротивление растеканию. Максимально допустимые значения удельных сопротивлений для устройства и сечения его элементов прописаны в нормативной документации. Параметры заземляющих элементов не должны нарушаться при проектировании, выборе материала для проводников (электродов) и последующем монтаже. Выбор заземляющих материалов и схемы монтажа зависит от ряда параметров, в том числе от сопротивления грунта.

Проектирование

Грамотные защитные мероприятия начинаются с качественного проекта. Проект должен учитывать особенности постройки дома и отвечать нормативным документам. Оптимальный вариант - когда заземляющие конструкции закладывается в момент общего проектирования дома или дачи. Тогда можно использовать внутренние элементы сооружения в качестве составляющих защитной заземляющей системы - это снизит стоимость монтажа заземления.

Компания «МЗК-Электро» выполняет расчет заземления, проектирование, сборку и обслуживание молниезащиты и элементов заземляющих контуров, в качестве составной части системы и отдельной услуги.

Типы

Заземление зданий и электроустановок различного напряжения сооружают по одному из трех типов: кольцевому, глубинному или фундаментному. Выбор вида контура и материалов для заземлителя для конкретного строения производится с учётом его размеров и назначения, возможностей и ограничений монтажа, степени насыщенности электрооборудованием и ряда других причин. При необходимости можно соединять между собой несколько систем заземления (с учетом риска возникновения коррозии). Любое заземление зданий необходимо соединить с шиной уравнивания потенциалов.

Кольцевое заземление дома

Устройство

Кольцевой тип заземлителя иначе называют поверхностным. Такой заземлитель представляет собой замкнутую металлическую кольцевую заземляющую шину, проложенную по периметру постройки. Не менее 80% его длины должно контактировать с грунтом. Как правило, заземляющий контур прокладывают ниже точки промерзания земляного грунта (около 0,5 метра), на расстоянии от защищаемого объекта не меньше 1 метра. Монтаж заземления в районах с высокой вероятностью возникновения коррозии требует использования заземлителя кольцевого типа из нержавеющей стали. В таких случаях от коррозии должны быть защищены также резьбовые соединения элементов, расположенные ниже поверхности земли.

Шины кольцевого заземлителя изготавливаются из следующих материалов:



  • Медь, круглый проводник, диаметром 8 мм.

Кольцевое заземление зданий является одним из самых эффективных видов устройства. Таким методом можно оборудовать дачи или загородные дома. Кольцевой контур из металла равномерно распределяет ток по периметру здания, а между токоотводами образуется равное напряжение. К недостаткам можно отнести только длительный и трудоемкий процесс монтажа.

Глубинный заземлитель

Устройство

Данный вид представляет собой несколько металлических стержней, вертикально погружённых в грунт на определенную глубину и соединённых с заземляющей шиной-контуром. Расчёт заземления и заглубления производится методом определения величины сопротивления.

Длина контура также зависит от характеристик грунта. Рекомендуется к каждому отдельному токоотводу заземляющего контура подсоединять один глубинный заземлитель длиной не менее 9 метров, прокладываемый на расстоянии не менее 1 метра от защищаемого объекта. По DIN V VDE V 0185 для категорий молниезащиты III и IV длина заземлителя должна составлять минимум 2,5 метра. Монтаж заземления производится с помощью бензо-, электро- или пневмомолотов (в зависимости от конкретного типа грунта). При оборудовании защиты в частном доме возможна установка заземляющих стержней вручную. Соединения, расположенные в земляном грунте, необходимо обезопасить от коррозии и подсоединить к шине уравнивания потенциалов.

Материалы для изготовления кольцевого контура:

  • Оцинкованная или нержавеющая сталь,
    - плоский проводник, размер 40х4 мм,
    - круглый проводник, диаметр 20 мм,
  • Оцинкованная сталь, труба, сечением 25 мм,

Важным элементом глубинного заземления является модульно-штыревая система. При этом монтаж модульных заземлителей производится штырями (стержнями), заглубленными один за другим с помощью ударного электроинструмента. В отдельных случаях в процессе установки это позволяет достигать глубины более 30 метров. Основной фактор, влияющий на глубину укладки и количество стержневых заземлителей - удельное сопротивление грунта. Профессиональный расчет заземления позволит определить все параметры системы максимально точно.

Соединение между стержнями и шиной создаётся резьбовое или безрезьбовое. Площадь, которую занимают элементы схемы при производстве работ по устройству модульно-стержневого контура, минимальна. Это позволяет производить монтаж заземления даже в подвалах строений.

Модульный принцип устройства заземления является альтернативой классической схеме. Устройство по классическому принципу основано на том, что вертикальные стержни-заземлители сравнительно небольшой длины забиваются друг за другом по прямой линии или хаотично, с учётом расстояния для снижения экранирования.

Измерение сопротивления растеканию желательно производить по мере работы, после каждого вбитого штыревого элемента. К сожалению, при самостоятельном устройстве заземлителя в загородном коттедже или на даче аппаратура для измерения сопротивления растеканию, как правило, отсутствует, и заземляющая конструкция делается "на глаз". В общем случае число вертикальных заземлителей и длина горизонтального проводника зависят от искомого результата. При этом необходимо знать удельное сопротивление грунта. Соответственно, для грунта с большим удельным сопротивлением понадобится в несколько раз больше заземлителей.

Важнейшее преимущество глубинной системы - ее доступность и простота установки. Монтаж такого контура можно осуществить самостоятельно. Заземление зданий дачного типа чаще всего делают именно таким способом. К недостаткам этого варианта можно отнести несколько меньшую, по сравнению с другими типами заземлителей, эффективность устройства при обслуживании электроустановок.

Фундаментный заземлитель

Устройство

Фундаментный заземлитель размещается в железобетонном фундаменте сооружения. Этот тип контура задействуется в тех случаях, когда из фундамента выведены арматурные стержни для присоединения токоотводов. Электроды при монтаже устройства соединяют с арматурой, чаще всего резьбовым соединением или муфтой, на расстоянии около 3 метров. При этом запрещается использовать в грунте клинообразные зажимы. Для устройства фундаментного контура лучше всего применять ленточные держатели, установленные с интервалом в 2 метра. При монтаже заземляющего оборудования в районах с высокой вероятностью возникновения коррозии необходимо устанавливать фундаментный заземлитель из нержавеющей стали.

Материалы для изготовления фундаментных заземлителей:

  • Горячеоцинкованная или нержавеющая сталь,
    - плоский проводник, размер 40х4 мм,
    - круглый проводник, сечением 10 мм,
  • Медь, круглый проводник, диаметр 8 мм.

К преимуществам фундаментного контура относится высокая экономичность и простота реализации, минимальное заглубление, отсутствие необходимости укладки дополнительных заземляющих шин. К сожалению, на этапе заливки железобетонного фундамента строители очень часто забывают как о молниезащите, так и о защитном заземлении в целом. По этой причине фундаментное заземление зданий используется реже остальных видов.

При выборе варианта реализации для промышленного здания , многоэтажного дома, загородного коттеджа , дачи или другого строительного объекта, включая кровлю , с любыми значениями напряжения, необходимо произвести точный расчёт заземления и правильно подобрать материалы. Лучше всего доверить работу по выбору, расчёту и монтажу систем электробезопасности грамотным специалистам, имеющим соответствующее образование и опыт работы.

Специалисты компании «МЗК-Электро» выполнят монтаж заземления быстро, квалифицированно и качественно, рационально использовав средства заказчика, рассчитав оптимальную схему и использовав надёжные заземляющие элементы из каталогов известных производителей.

Расчет стоимости

Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

Выберете размер... 10 12 14 16 18 20 22

Наши объекты