Тенденции развития мировой энергетики и перспективы электроэнергетики снг. Российская энергетика: проблемы и перспективы

8 ноября начала свою работу XХVI Международная научно-техническая конференция «Перспективы развития электроэнергетики и высоковольтного электротехнического оборудования. Коммутационные аппараты, преобразовательная техника, микропроцессорные системы управления и защиты «. Организатором конференции выступила Международная Ассоциация ТРАВЭК , при поддержке Российской академии наук , Академии электротехнических наук РФ , Министерства энергетики РФ , Министерства промышленности и торговли РФ , ПАО «Россети» , ПАО «ФСК ЕЭС» . RusCable.Ru – информационный партнёр мероприятия.

Как рассказал модератор конференции президент Международной Ассоциации ТРАВЭК, д.т.н. В.Д. Ковалев , участниками конференции по результатам работы будет принято решение, отражающее состояние и перспективы развития электроэнергетики и высоковольтного электротехнического оборудования, которое направляется в государственные структуры, ПАО «Россети», ПАО «ФСК ЕЭС» и другие организации РФ.

«Новый этап в развитии электротехнической промышленности отмечен новыми вызовами. Помимо продолжения реализации государственной политики импортозамещения, перед нами стоят новые задачи. Мы должны переходить на новый инновационный продукт. И прежде всего – это цифровизация электросетевого комплекса. Эти задачи ставят перед нами новые вызовы – создать инновационную технику, что обеспечит эту цифровизацию, обеспечить кибербезопасность новой техники. Таким образом, мы сейчас формируем и меры господдержки, которые направлены на решение этих задач. Хотел бы, чтобы в рамках конференции нашли ответы и такие вопросы. Есть более важные задачи, они определены в Национальной технологической инициативе – это формирование платформы EnergyNet, которая также в себя включает элементы цифровизации Smart Grid. И здесь я хочу отметить, что мы давно уже говорим об этих проблемах, хотелось бы уже, чтобы они переходили в практическую плоскость. Надеюсь, на сегодняшней конференции обсудят эти вопросы», – с таким приветственным словом выступил заместитель директора Департамента станкостроения и инвестиционного машиностроения Минпромторга России Олег Токарев .

На заседании Межведомственного координационного совета по вопросам развития энергетического машиностроения, электротехнической и кабельной промышленности были сформированы рабочие группы по различным отраслям для разработки «дорожных карт», направленных на качественное обновление электросетевого комплекса. Такую дорожную карту развития силовой электротехники до 2030 года на конференции представил главный инженер ПАО «Россети» Дмитрий Гвоздев . Цифровая интеллектуальная сеть – это сеть, которая в реальном времени отслеживает параметры и режимы работы всех участников процесса выработки, передачи и потребления электроэнергии. Получая обратную связь через разветвлённую систему датчиков в режиме online, интеллектуальная сеть автоматически реагирует на все изменения, происходящие в сети, принимая оптимальные решения для предотвращения аварий и осуществления энергоснабжения с максимальной надёжностью и экономической эффективностью. Функциональные требования интеллектуальной сети: учёт на всех уровнях; самодиагностика и способность к самовосстановлению после сбоев в подаче электроэнергии; снижение затрат на строительство и эксплуатацию; устойчивость сети к физическому и кибернетическому вмешательству злоумышленников; обеспечение требуемого качества передаваемой электроэнергии; обеспечение синхронной работы источников генерации и узлов хранения электроэнергии; возможность активного участия в работе сети потребителей; интеграция в сеть новых высокотехнологичных продуктов и предоставление новых электросетевых услуг на рынках.

К силовой электротехнике отнесли: трансформаторы, автотрансформаторы силовые; измерительные трансформаторы тока, трансформаторы напряжения; воздушные линии электропередачи; КРУЭ; выключатели; высоковольтные вводы; автоматизированные системы управления энергообъектом; оборудование для массового внедрения передач постоянного тока. Как рассказал г-н Гвоздев, к 2025 году в «Россетях» планируют построить цифровую сеть. И первым этапом должно быть оснащение всех элементов электротехники системой управления и сбора/передачи параметров работы в цифровом виде.

С футуристическим докладом «Энергоинформационные эргатические системы – будущее электроэнергетики» выступил генеральный директор Института энергетической стратегии Виталий Бушуев . Он представил эргатическую систему как человеко-машинную энергоинформационную систему производства и жизнедеятельности. Актуальными проблемами энергетики стали: количественный и качественный рост энергопотребления; новая техника генерации (ВИЭ) и транспорта (УВЛ и СПИН); энерго-информационная интеграция электрических систем; глобализация и регионализация энергетики; эргатические системы. Новая парадигма развития энергосистем – это энергосистема как интегратор многообразия потребителей и производителей электрической энергии. Обозначил докладчик и основные тренды развития электроэнергетических систем как переход к энергетическим системам нового поколения по 4-м основным направлениям: сочетание концентрированной и распределенной генерации; развитие технологий гибких связей межсистемного энергообъединения; развитие технологий накопления электроэнергии в энергосистеме; создание систем управления энергосистемой («умная энергосистема»).

Доклад «ЕЭС России в период до 2023 года: проблемы и перспективы» представила Евгения Сердюкова , начальник департамента перспективного развития сетей АО «Институт «ЭНЕРГОСЕТЬПРОЕКТ». Согласно анализу показателей, на период 2017-2023 гг. потребление электроэнергии в России будет расти, одновременно с ростом введенных мощностей. Так потребление электроэнергии вырастет с 1026,6 в 2016 году до 1101,04 млрд. кВт.ч в 2023 году. Максимальные электрические нагрузки вырастут 151,07 в 2016 до 164,598 тыс. МВт к 2023 году. Вывод из эксплуатации генерирующих мощностей составит 7,7 тыс. МВт, ввод в эксплуатацию – 18,9 тыс. МВт к 2023 году. Ввод трансформаторной мощности напряжением 220 кВ и выше за период 2017-2023 гг. составит 54,6 тыс.МВА, из них: 750 кВ – 3,0 тыс. МВА; 500 кВ – 14,6 тыс. МВА; 330 кВ – 4,8 тыс. МВА; 220 кВ – 32,2 тыс. МВА. Ввод линий электропередачи напряжением 220 кВ и выше за период 2017-2023 гг. составит 16,7 тыс. км, из них: 750 кВ – 0,6 тыс. км; 500 кВ – 3,0 тыс. км; 330 кВ – 2,2 тыс. км; 220 кВ – 10,9 тыс. км. Основные проблемы, решаемые при планировании перспективного развития ЕЭС: старение основного генерирующего и электросетевого оборудования (около 50% оборудования отработало 30 лет и более); ненадежное электроснабжение ряда потребителей; ограничения схем выдачи мощности отдельных электростанций; недостаточная пропускная способность межсистемных сечений.

В докладе «Интеграция энергетических систем» Заведующий отделением АО «ЭНИН» Валентин Баринов рассмотрел тенденции развития больших энергетических систем. Эволюция энергетических систем в мире идет в направлении объединения энергетических систем в комплексные интегрированные системы («супергриды»: региональные, межгосударственные или островные). И в условиях идущих процессов интеграции энергетических систем актуальным для России является решение следующих задач: определение ключевых направлений развития электроэнергетического комплекса страны и разработка системы целостного оптимального управления развитием и функционированием электроэнергетического комплекса страны в условиях наличия многих собственников электроэнергетических объектов с учетом различных временных и территориальных уровней управления и идущего в стране увеличения разнообразия источников генерации и компонентов энергосистем.

Павел Драчев , младший научный сотрудник Института систем энергетики им. Л.А. Мелентьева Сибирского отделения Российской академии наук, представил методику построения развития основной электрической сети. Это уже реализованная программа, которая позволяет сделать выбор концепции построения межсистемных ЛЭП (220 кВ и выше); определить перспективные объекты ЛЭП (5-15 лет) и их предварительной очередности их вводов и стоимости; обоснование присоединения систем, потребителей и узлов; выбрать класс напряжения, способы дальнего транзита электроэнергии и др.

С докладом «Организация комплексного процесса управления качеством электроэнергии - приоритетная задача энергетической стратегии развития России» выступил Валерий Воротницкий , АО «Научно-технический центр ФСК ЕЭС». Он указал, что в системе электроснабжения России в настоящее время существуют три наиболее существенные проблемы: качество электроэнергии в узлах присоединения потребителей, не в полной мере соответствующее нормативным требованиям, недостаточный уровень надёжности электроснабжения потребителей электроэнергии, присоединённых к распределительным электрическим сетям, завышенные потери электроэнергии. В своём выступлении г-н Воротницкий представил технические средства для повышения качество электроэнергии (такие как многофункциональные системы повышения КЭ и технологии: статические тиристорные компенсаторы реактивной мощности (СТК), статические компенсаторы реактивной мощности (СТАТКОМ), активные фильтро-симметрирующие устройства, вставки постоянного тока на преобразователях напряжения (ВПТН), системы FACTS.) и предложения по совершенствованию нормативной базы обеспечения надёжности, качества и экономичности.

Доклад «Обобщение тенденций развития и применения технологий передачи электроэнергии постоянным током (по материалам международного коллоквиума 2017 CIGRÉ A3, B4 & D1)» представила Ольга Суслова , АО «НТЦ ЕЭС». Докладчица выделила 2 мировые тенденции развития технологии передачи электроэнергии постоянным током с помощью линейно коммутируемых преобразователей тока: ППТ ультравысокого напряжения с ВЛ от 1500 до 3300 км и многотерминальные ППТ УВН.

Области применения объектов постоянного тока с преобразователями тока: передача электроэнергии по воздушным и воздушно-кабельным линиям напряжением от ±350 кВ ±1100 кВ пропускной способностью до 12 ГВт; связь несинхронно работающих энергообъединений через вставки постоянного тока; межгосударственные электропередачи коммерческого назначения; увеличение надежности энергоснабжения; компенсация суточных и сезонных колебаний генерируемых мощностей, выравнивание пиков нагрузки и потребления; передача электроэнергии через протяженные водные и наземные преграды. Области применения объектов постоянного тока с преобразователями напряжения: передача электроэнергии по кабельным воздушно-кабельным линиям напряжением ±500 кВ мощностью до 1,4 ГВт; связь несинхронно работающих энергообъединений через вставки постоянного тока; межгосударственные электропередачи коммерческого назначения; присоединение к энергосистемам генераторов с нестабильным уровнем генерации, зависящим от условий окружающей среды – возобновляемые источники энергии (ВИЭ) (ветропарки, солнечные, приливные и другие установки генераторов); надежное электроснабжение автономных нагрузок и изолированных энергосистем; энергоснабжение офшорных нефтяных и газовых платформ; регулирование реактивной мощности, улучшение качества напряжения в точках присоединения; создание многотерминальных электропередачи постоянного тока, сетей постоянного тока; компенсация суточных и сезонных колебаний генерируемых мощностей.

Полный список докладов можно увидеть на сайте . Сегодня пройдет второй день конференции, на котором рассмотрят уже конкретные новые разработки в области электротехники.

Основные проблемы развития электроэнергетики России связаны: с технической отсталостью и износом фондов отрасли, несовершенством хозяйственного механизма управления энергетическим хозяйством, включая ценовую и инвестиционную политику, ростом неплатежей энергопотребителей. В условиях кризиса экономики сохраняется высокая энергоемкость производства.

В настоящее время более 18% электростанций полностью выработали свой расчетный ресурс установленной мощности. Очень медленно идет процесс энергосбережения. Правительство пытается решить проблему разных сторон: одновременно идет акционирование отрасли (51% акций остается у государства), привлекаются иностранные инвестиции и начала внедряться программа по снижению энергоемкости производства.

В качестве основных задач развития российской энергетики можно выделить следующее: 1) снижение энергоемкости производства; 2) сохранение единой энергосистемы России; 3) повышение коэффициента используемой мощности энергосистемы; 4) полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга; 5) скорейшее обновление парка энергосистемы; 6) приведение экологических параметров энергосистемы к уровню мировых стандартов.

Сейчас перед отраслью стоит ряд проблем. Важной является экологическая проблема. На данном этапе, в России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз.

Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что экологический фактор долгое время учитывался крайне мало или вовсе не учитывался. Наиболее не экологична угольная ТЭС, вблизи них радиоактивный уровень в несколько раз превышает уровень радиации в непосредственной близости от АЭС. Использование газа в ТЭС гораздо эффективнее, чем мазута или угля; при сжигании 1 тонны условного топлива образуется 1,7 тонны углерода против 2,7 тонны при сжигании мазута или угля. Экологические параметры, установленные ранее не обеспечивают полной экологической чистоты, в соответствии с ними строилось большинство электростанций.

Новые стандарты экологической чистоты вынесены в специальную государственную программу “Экологически чистая энергетика”. С учетом требований этой программы уже подготовлено несколько проектов и десятки находятся в стадии разработки. Так, существует проект Березовской ГРЭС-2 с блоками на 800 мВт и рукавными фильтрами улавливания пыли, проект ТЭС с парогазовыми установками мощностью по 300 мВт, проект Ростовской ГРЭС, включающий в себя множество принципиально новых технических решений. Отдельно рассмотрим проблемы развития атомной энергетики.

Атомная промышленность и энергетика рассматриваются в Энергетической стратегии (2005-2020гг.) как важнейшая часть энергетики страны, поскольку атомная энергетика потенциально обладает необходимыми качествами для постепенного замещения значительной части традиционной энергетики на ископаемом органическом топливе, а также имеет развитую производственно-строительную базу и достаточные мощности по производству ядерного топлива. При этом основное внимание уделяется обеспечению ядерной безопасности и, прежде всего безопасности АЭС в ходе их эксплуатации. Кроме того, требуется принятие мер по заинтересованности в развитии отрасли общественности, особенно населения, проживающего вблизи АЭС.

Для обеспечения запланированных темпов развития атомной энергетики после 2020 г., сохранения и развития экспортного потенциала уже в настоящее время требуется усиление геологоразведочных работ, направленных на подготовку резервной сырьевой базы природного урана.

Максимальный вариант роста производства электроэнергии на АЭС соответствует как требованиям благоприятного развития экономики, так и прогнозируемой экономически оптимальной структуре производства электроэнергии с учетом географии ее потребления. При этом экономически приоритетной зоной размещения АЭС являются европейские и дальневосточные регионы страны, а также северные районы с дальнепривозным топливом. Меньшие уровни производства энергии на АЭС могут возникнуть при возражениях общественности против указанных масштабов развития АЭС, что потребует соответствующего увеличения добычи угля и мощности угольных электростанций, в том числе в регионах, где АЭС имеют экономический приоритет.

Основные задачи по максимальному варианту: строительство новых АЭС с доведением установленной мощности атомных станций до 32 ГВт в 2010 г. и до 52,6 ГВт в 2020 г.; продление назначенного срока службы действующих энергоблоков до 40-50 лет их эксплуатации с целью максимального высвобождения газа и нефти; экономия средств за счет использования конструктивных и эксплуатационных резервов.

В этом варианте, в частности, намечена достройка в 2000-2010 годы 5 ГВт атомных энергоблоков (двух блоков - на Ростовской АЭС и по одному - на Калининской, Курской и Балаковской станциях) и новое строительство 5,8 ГВт атомных энергоблоков (по одному блоку на Нововоронежской, Белоярской, Калининской, Балаковской, Башкирской и Курской АЭС). В 2011 - 2020 гг. предусмотрено строительство четырех блоков на Ленинградской АЭС, четырех блоков на Северо-Кавказской АЭС, трех блоков Башкирской АЭС, по два блока на Южно-Уральской, Дальневосточной, Приморской, Курской АЭС -2 и Смоленской АЭС - 2, на Архангельской и Хабаровской АТЭЦ и по одному блоку на Нововоронежской, Смоленской и Кольской АЭС - 2.

Одновременно в 2010 - 2020 гг. намечено вывести из эксплуатации 12 энергоблоков первого поколения на Билибинской, Кольской, Курской, Ленинградской и Нововоронежской АЭС.

Основные задачи по минимальному варианту - строительство новых блоков с доведением мощности АЭС до 32 ГВт в 2010 г. и до 35 ГВт в 2020 г. и продление назначенного срока службы действующих энергоблоков на 10 лет.

Основой электроэнергетики России на всю рассматриваемую перспективу останутся тепловые электростанции, удельный вес которых в структуре установленной мощности отрасли составит к 2010 г. 68%, а к 2020 г. - 67-70% (2000 г. - 69%). Они обеспечат выработку, соответственно, 69% и 67-71% всей электроэнергии в стране (2000 г. - 67%).

Учитывая сложную ситуацию в топливодобывающих отраслях и ожидаемый высокий рост выработки электроэнергии на тепловых электростанциях (почти на 40-80 % к 2020 г.), обеспечение электростанций топливом становится в предстоящий период одной из сложнейших проблем в энергетике.

Суммарная потребность для электростанций России в органическом топливе возрастет с 273 млн т у.т. в 2000 г. до 310-350 млн т у.т. в 2010 г. и до 320-400 млн т у.т. в 2020 г. Относительно не высокий прирост потребности в топливе к 2020 г. по сравнению с выработкой электроэнергии связан с практически полной заменой к этому периоду существующего неэкономичного оборудования на новое высокоэффективное, что требует осуществления практически предельных по возможностям вводов генерирующей мощности. В высоком варианте в период 2011-2015 гг. на замену старого оборудования и для обеспечения прироста потребности предлагается вводить 15 млн кВт в год и в период 2016-2020 гг. до 20 млн кВт в год. Любое отставание по вводам приведет к снижению эффективности использования топлива и соответственно к росту его расхода на электростанциях, по сравнению с определенными в Стратегии уровнями.

Необходимость радикального изменения условий топливного обеспечения тепловых электростанций в европейских районах страны и ужесточения экологических требований обусловливает существенные изменения структуры мощности ТЭС по типам электростанций и видам используемого топлива в этих районах. Основным направлением должно стать техническое перевооружение и реконструкция существующих, а также сооружение новых тепловых электростанций. При этом приоритет будет отдан парогазовым и экологически чистым угольным электростанциям, конкурентоспособным в большей части территории России и обеспечивающим повышение эффективности производства энергии. Переход от паротурбинных к парогазовым ТЭС на газе, а позже - и на угле обеспечит постепенное повышение КПД установок до 55 %, а в перспективе до 60 % что позволит существенно снизить прирост потребности ТЭС в топливе.

Для развития Единой энергосистемы России Энергетической стратегией предусматривается:

  • 1) создание сильной электрической связи между восточной и европейской частями ЕЭС России, путем сооружения линий электропередачи напряжением 500 и 1150 кВ. Роль этих связей особенно велика в условиях необходимости переориентации европейских районов на использование угля, позволяя заметно сократить завоз восточных углей для ТЭС;
  • 2) усиление межсистемных связей транзита между ОЭС (объединенной энергетической системой) Средней Волги - ОЭС Центра - ОЭС Северного Кавказа, позволяющего повысить надежность энергоснабжения региона Северного Кавказа, а также ОЭС Урала - ОЭС Средней Волги - ОЭС Центра и ОЭС Урала - ОЭС Северо-Запада для выдачи избыточной мощности ГРЭС Тюмени;
  • 3) усиление системообразующих связей между ОЭС Северо-Запада и Центра;
  • 4) развитие электрической связи между ОЭС Сибири и ОЭС Востока, позволяющей обеспечить параллельную работу всех энергообъединений страны и гарантировать надежное энергоснабжение дефицитных районов Дальнего Востока.

Альтернативная энергетика. Несмотря на то, что Россия по степени использования так называемых нетрадиционных и возобновляемых видов энергии находятся пока в шестом десятке стран мира, развитие этого направления имеет большое значение, особенно учитывая размеры территории страны. Ресурсный потенциал нетрадиционных и возобновляемых источников энергии составляет порядка 5 млрд. т условного топлива в год, а экономический потенциал в самом общем виде достигает не менее 270 млн. т условного топлива (рис. 2).

Пока все попытки использования нетрадиционных и возобновляемых источников энергии в России носят экспериментальный и полуэкспериментальный характер или в лучшем случае такие источники играют роль местных, строго локальных производителей энергии. Последнее относится и к использованию энергии ветра. Это происходит потому, что Россия еще не испытывает дефицита традиционных источников энергии и ее запасы органического топлива и ядерного горючего пока достаточно велики. Однако и сегодня в удаленных или труднодоступных районах России, где нет необходимости строить большую электростанцию, да и обслуживание ее зачастую некому, «нетрадиционные» источники электроэнергии - наилучшее решение проблемы.

Намечаемые уровни развития и технического перевооружения отраслей энергетического сектора страны невозможны без соответствующего роста производства в отраслях энергетического (атомного, электротехнического, нефтегазового, нефтехимического, горношахтного и др.) машиностроения, металлургии и химической промышленности России, а также строительного комплекса. Их необходимое развитие - задача всей экономической политики государства.

Роль энергетики определяется местом в экономике. ТЭК России - круп­нейший инфраструктурный комплекс.

Электроэнергетика играет в ТЭК ключевую роль, является в ней интег­рирующей подсистемой. Она выступает как преобразователь практически всех видов первичных топливно-энергетических ресурсов (ТЭР). Электроэнергети­ка - это наиболее удобный и универсальный энергоноситель для удовлетворе­ния производственных, социальных, бытовых и других энергетических по­требностей общества. Мировые тенденции таковы, что доля электроэнергии в потреблении ТЭР неуклонно возрастает и будет возрастать в дальнейшем. В стратегическом плане электроэнергетика решающим образом влияет на фор­мирование условий для подъема экономики России и укрепление ее экономи­ческой безопасности. Все это определяет исключительно важное значение электроэнергетики, ее нормального функционирования и развития для обеспе­чения энергетической и национальной безопасности России и ее регионов в экономическом, научно-техническом, внешнеэкономическом и других аспек-

Основу производственного потенциала российской электроэнергетики в настоящее время составляют более 700 электростанций общей мощностью свыше 200 ГВт и линии электропередачи всех классов напряжений протяжен­ностью около 2,5 млн. км. Более 90 % этого потенциала сосредоточено в Еди­ной энергетической системе (ЕЭС) России, являющейся уникальным техниче­ским комплексом, обеспечивающим электроснабжение потребителей на боль­шей части обжитой территории страны.

Функционирование и развитие ЕЭС России обеспечено богатейшими то­пливно-энергетическими ресурсами природного газа, нефти, угля, ядерного топлива, гидроэнергией и другими возобновляемыми источниками энергии. Настоящий период характеризуется накоплением проблем в электроэнергети­ке, от решения которых будет зависеть не только энергетическая, но и нацио­нальная безопасность страны в первой четверти XXI века.

В последние годы в электроэнергетике России неуклонно обостряется проблема физического и морального старения оборудования электростанций, тепловых и электрических сетей.

Темпы воспроизводства основных фондов в электроэнергетике резко снизились.

Объем капитальных вложений в 2001 году по сравнению с 1990 годом уменьшился в 3,1 раза, а ввод мощностей снизился в 4,6 раза.

Если на начало 1991 г. доля генерирующего оборудования, проработав­шего более 30 лет, составляла 13,3 % от суммарной установленной мощности ЕЭС России, то на конец 2000 г. она выросла более чем в три раза и составила 46,1 %. При существующих темпах демонтажа старого оборудования и ввода новых мощностей к 2010 г. выработает свой ресурс более 70 % генерирующего оборудования. Аналогичную картину представляет износ основных фондов электросетевого оборудования. Оставшиеся мощности уже к 2006 году не смо­гут обеспечить электропотребление соответствующее уровню 1998 года.

Наметившаяся минимальная тенденция роста в 2002 году потребления (рис. 1.1) еще более приблизит появление дефицита энергии.

В ближайшее время требуется провести работы по реновации 450 турбоустановок высокого давления, 746 котлов с рабочим давлением бо­лее 100 атмосфер, паропроводов общим весом свыше 20 тыс. тонн.

Старение оборудования и низкие темпы его реновации послужили при­чиной возникновения ряда проблем.

Одна из них - накопление изношенного оборудования. Следствием этого являются:

Рост затрат на его ремонт (до 200 %);

Ухудшение технико-экономических показателей работы электропред­приятий (удельных расходов топлива, расходов электроэнергии на соб­ственные нужды, потерь электроэнергии в сетях). В результате предпри­ятия РАО ""ЕЭС России" недополучают более 4 млрд. рублей в год;

Другой проблемой является недостаточность существующих источников финансирования, требуемым объемам реновации.

На период 2000-2005 гг. ежегодная потребность в финансовых ресурсах для выполнения требуемых объемов реновации основных фондов составляет 50 млрд. рублей.

В настоящее время финансирование работ по реновации электрообору­дования от имеющихся источников (амортизация и прибыль на инвестиции) составляет всего 50 % потребности. Следствием этого являются:

Недостаточный объем работ по реновации основных фондов;

Сокращение, замораживание НИОКР в области технического пере­вооружения;

Отсутствие новых конструкционных материалов для современных энер­гоустановок;

Отсутствие готовых к серийному выпуску образцов современного энер­гооборудования для замещения вырабатывающего ресурс по значитель­ной части мощностного ряда.

Для обеспечения потребности в энергии отраслей экономики и населе­ния страны, реализации перспективы экспорта электроэнергии, повышения эффективности энергопроизводства необходима работа по воспроизводству основных производственных фондов электроэнергетики в объемах, обеспечи­вающих необходимую рабочую мощность.

Приоритетным направлением является техническое перевооружение, при котором стоимость 1 кВт вводимой мощности на 30-50 % ниже, чем при новом строительстве.

Учитывая, что наработка части турбоагрегатов позволяет продлить ре­сурс на 30-50 тыс. часов, а также то, что в настоящее время отсутствуют тех­нологически отработанные, доведенные до промышленного применения об­
разцы энергоустановок, в которых применяются современные технологии, предлагается следующая схема реновации энергооборудования.

Приоритет работам по продлению срока службы энергоагрегатов и замене отработавших ресурс энергоустановок на аналогичные (с улучшенными характеристиками);

Технологическая отработка головных образцов энергоустановок, в которых применяются современные технологии.

Преимущественное внедрение современных технологий;

Сокращение объемов замены на аналогичное оборудование.

1. Проведение необходимых научно-исследовательских, опытно - конструкторских и проектных работ в области реновации.

2. Организацию разработки и внедрения мер и перспективных технологий по продлению ресурса энергооборудования.

3. Организацию разработки и внедрения современного энергооборудова­ния для замещения выработавшего ресурс.

Для ТЭС, работающих на газообразном топливе: бинарный парогазо­вый цикл или газотурбинные надстройки паросиловых агрегатов.

Для ТЭС, работающих на твердом топливе: сжигание топлива в котлах с циркулирующим кипящим слоем.

Для ТЭС, сжигающих любой вид органического топлива: паросиловые блоки, работающие с ультрасверхкритическими параметрами пара (с перспективными системами подогрева питательной воды, с современными материалами котлов и турбин и другими усовершенствованиями).

Предлагаемые конструкции должны иметь КПД не менее 45 %.

4. Определение базовых электростанций для отработки головных образцов энергооборудования.

5. Разработка и промышленное освоение производства новых конструк­ционных материалов.

Для реализации проектов современных энергоустановок требуются но­вые материалы, применение которых позволит:

Повысить показатели и соответственно увеличить КПД;

Снизить материалоемкость конструкций;

Увеличить ресурс работы оборудования;

Снизить эксплуатационные расходы за счет снижения объемов контроля металла.

6. Создание системы инжинирингового обеспечения реновации.

Реализация комплекса необходимых мер позволит:

Обеспечить надежное энергоснабжение потребителей России;

Увеличить экспорт электроэнергии;

Повысить эффективность энергопроизводства.

Мы должны готовить себя к энергетической революции - может быть, в XXI веке в энергетику придут термоядерные электростанции. Путь от идеи до массового внедрения занимает в энергетике примерно полвека. Первые опыты по термоядерному синтезу проведены в пятидесятые годы XX столетия. Так, может быть, начало нового тысячелетия принесет нам новые, экологически чистые термоядерные электростанции? Будем надеяться на это. Но все же традиционные методы получения энергии будут занимать основное место в энергетическом балансе. Поэтому задача ученых - усовершенствова­ние этих традиционных технологий, превращение их в экологически более чистые, экономичные.

Ученые считают, что преобразование облика энергетики XXI века будет определяться такими достижениями научно-технического прогресса, как кера­мические двигатели, высокотемпературная сверхпроводимость, плазменные технологии, новые атомные реакторы, новые, более эффективные способы сжигания угля и, наконец, возобновляемые источники энергии. В этих облас­тях науки и техники огромное поле деятельности для будущих ученых и ин­женеров.

Российская электроэнергетика оснащена отечественным оборудованием, располагает значительным экспортным потенциалом, обладает развитым на - учно-техническим отраслевым комплексом, квалифицированными научными и инженерными кадрами, способными осуществлять разработку и внедрение но­вых технологий и поступательное развитие отрасли.

Как известно, на данный период времени, перед отраслью стоит ряд проблем. Наиболее важной из которых является экологическая проблема. В России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз. Так, В 2000 г. объемы выбросов вредных веществ в атмосферу составляли 3,9 млн тонн (98% к уровню 1999 г.), в том числе выбросы от ТЭС - 3,5 млн тонн (90%). На диоксид серы приходится до 40% общего объема выбросов, твердых веществ - 30%, оксидов азота - 24%. Таким образом, ТЭС являются главной причиной формирования кислотных осадков.

Крупнейшими загрязнителями атмосферы являются Рефтинская ГРЭС (г. Асбест, Свердловская обл.) -360 тыс. тонн, Новочеркасская (г. Новочеркасск, Ростовская обл.) - 122 тыс. тонн, Троицкая (г. Троицк-5, Челябинская обл.) - 103 тыс. тонн, Приморская (г. Лучегорск, Приморский край) - 77 тыс. тонн, Верхнетагильская ГРЭС (Свердловская обл.) - 72 тыс. тонн

Энергетика является и крупнейшим потребителем пресной и морской воды, расходуемой на охлаждение агрегатов и используемой в качестве носителя тепла. На долю отрасли приходится 77% общего объема свежей воды, использованной промышленностью России. Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что на экологический фактор не уделялось достаточное количество внимания. После катастрофы на Чернобыльской АЭС под влиянием общественности в России были существенно приторможены темпы развития атомной энергетики. Конечно, это неудивительно. Ведь авария на этой станции (Украина, севернее Киева) 26 апреля 1986 года по долговременным последствиям стала самой масштабной катастрофой, которая произошла за весь исторический период существования человечества. Впервые сотни тысяч людей столкнулись с реальной опасностью “мирного атома”, неизбежностью возникновения чрезвычайной ситуации в условиях НТР, с неготовностью общества и государства к их предотвращению и сведению к минимуму их последствий.

Непосредственно после аварии общая площадь загрязнения составила 200 тысяч км.2. Площадь загрязнения, где устойчиво сохраняется повышенный уровень загрязнения- 10 тысяч км 2 . Здесь расположено около 640 населенных пунктов с населением свыше 230 тысяч человек. Радиоактивное загрязнение окружающей среды в пределах Украины, Белоруссии, некоторых областях России, остается крайне острой проблемой. Поэтому существовавшая ранее программа ускоренного достижения суммарной мощности АЭС в100 млн. квт (США уже достигли этого показателя) была фактически законсервирована. Огромные прямые убытки повлекло закрытие всех строившихся в России АЭС, станции, признанные зарубежными экспертами как вполне надежные, были заморожены даже в стадии монтажа оборудования. Однако последнее время положение меняется: в июне 93-го года был пущен четвертый энергоблок Балаковской АЭС, в ближайшие несколько лет планируется пуск еще нескольких атомных станций и дополнительных энергоблоков принципиально новой конструкции.

Таким образом, одной из немаловажных проблем энергетики является экологическая, которая непосредственно связана с использованием оборудования на электростанциях. Так, неправильное, небрежное обращение с техникой может привести к непредвиденным последствиям. На мой взгляд, государство должно в первую очередь уделять внимание именно этой проблеме, обеспечивать совершенную систему защиты всего населения от радиоактивных выбросов.

Другой нерешённой проблемой в сфере электроэнергетики является проблема использования устаревшего оборудования. Около одной пятой производственных фондов в электроэнергетике близки или превысили проектные сроки эксплуатации и требуют реконструкции или замены. Обновление оборудования, как известно, ведется недопустимо низкими темпами и в явно недостаточном объеме.

Следующей нерешённой проблемой электроэнергетики на данный момент стала проблема финансирования и развал хозяйственных связей.

Что же касается перспективы развития электроэнергетики России, то можно сделать вывод о том, что без нерешённых проблем процветание данной отрасли просто невозможно! На мой взгляд, правительство должно в первую очередь уделять внимание именно энергетике России, которая нуждается в выполнении определённых задач.

1. Снижение энергоемкости производства.

2. Сохранение единой энергосистемы России.

3. Повышение коэффициента используемой мощности э/с.

4. Полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга. 5. Скорейшее обновление парка э/с.

6. Приведение экологических параметров э/с к уровню мировых стандартов. На данный период времени для решения всех этих мер принята правительственная программа "Топливо и энергия", представляющая собой сборник конкретных рекомендаций по эффективному управлению отраслью и ее переходу от планово-административной к рыночной системе инвестирования.

Системными прогнозами развития всего электроэнергетического комплекса занимаются немногочисленные группы экспертов, которые разрабатывают так называемые «модели» всего ТЭК.

Так, структура производства электроэнергии по сценарию «Стратегия инерции» представлена на данном графике.

График №1.

При этом, эксперты считают, что инвестиции, требуемые для развития электрогенерации и электросетевого хозяйства до 2020 г. (с учетом компенсации выбывающих мощностей), составляют еще 457 млрд долл. в ценах 2005 г. (420 млрд долл., по оценкам Минпромэнерго). Таким образом, суммарно требуемые капитальные вложения в отечественный ТЭК в 2006-2020 гг. могут превысить 1 трлн долл. (I,12) При этом способность ТЭК мобилизовать подобные средства далеко не очевидна, особенно если иметь в виду возможное снижение цен на нефть и газ на мировых рынках и вероятность прихода частных инвесторов в электроэнергетику. В случае неудачи в электроэнергетике, «энергетический голод» будет обостряться, а темпы экономического роста замедлятся. Но даже успешная мобилизация таких огромных средств частично за счет отвлечения их из менее капиталоемких секторов экономики приведет к снижению темпов экономического роста и усилению перегрузки инвестиционного комплекса экономики, который ответит (и уже отвечает) удорожанием строительства единичной мощности.

Поэтому о процветании энергетики в России можно судить исходя из основных положений о том, каковы будут инвесторы и какое количество средств будет затрачено на развитие данной отрасли.

Электроэнергетический комплекс без преувеличения может быть назван одной из ключевых отраслей промышленности. Без электроэнергии невозможно производство в практически любой другой области. Таким образом, от энергетики, в конечном счете, зависит вся экономика нашей страны. Попробуем разобраться, в каком состоянии в настоящий момент находится российская энергетика и чего ожидать от нее в будущем.

Россия – один из лидеров мирового энергетического рынка

В настоящее время Россия входит в десятку крупнейших производителей электроэнергии и в число стран, обладающих самыми крупными запасами энергоресурсов. Во многом сегодняшнее лидерство определили заслуги советских строителей – речь идет о масштабном строительстве тепло- и гидроэлектростанций (проект ГОЭЛРО), а позднее и АЭС. В 60-80-х годах прогресс обеспечивался за счет активного освоения природных ресурсов Западной и Восточной Сибири.

А вот в последнее десятилетие XX-века энергетика была практически заброшена. Новые проекты, введенные в работу в тот период, можно пересчитать буквально по пальцам. В начале 2000-х ситуация начала понемногу исправляться, но и проблем пока еще очень много, и темпы роста не так велики, как хотелось бы.

Бич энергетики – устаревшее оборудование и технологии, отсутствие кадров и инвестиций

По оценкам экспертов, от 50 до 80% оборудования, занятого сегодня в российском производстве энергии, уже выработало или в ближайшие годы выработает свой ресурс. А это означает, что в обозримом будущем мы вполне сможем столкнуться с нехваткой электроэнергии и, как не трудно догадаться, с повышением цен. Несмотря на то, что с 2003 года наблюдается рост объема производства электроэнергии, электроэнергия становится все более дефицитной. У нас не хватает генерирующих мощностей, да и то, что есть, используется недостаточно эффективно: весь объем вырабатываемой энергии часто бывает сложно передать потребителю вследствие недостаточного развития электросетей.

Основной проблемой, доставшейся нам в наследство еще от СССР, является то, что половина электроэнергии в стране вырабатывается на газовых паротурбинных блоках, отличающихся малым КПД. КПД газовых паротурбинных блоков в полтора раза ниже, чем у парогазовых.

Страны Европейского Союза и США постепенно заменяют устаревшую паротурбинную технологию. Сегодня там на таких блоках генерируется менее 30% электроэнергии.

Эксперты Европейского банка реконструкции и развития в 2009 году провели исследование энергетического комплекса России и пришли к выводам о необходимости кардинальной реформы, включающей в себя полную замену оборудования на большинстве гидро- и теплоэнергостанций страны. По их подсчетам, общие затраты на модернизацию отрасли составят не менее 48 миллиардов евро.

Вместе с тем, в прошлом году нам удалось ввести в строй производственные мощности, генерирующие 6 ГВт электроэнергии, что стало рекордным показателем с 1985 года.

С другой стороны, российская промышленность продолжает оставаться чрезвычайно энергоемкой. Затраты энергии на производство ВВП превышают среднемировой показатель в 2,3 раза, а в отношении показателя государств Европы – в три раза.

Проблемой является и снижение научно-производственного потенциала в отрасли. Сегодня мы в состоянии производить генераторы и трансформаторы, не уступающие по эксплуатационным параметрам мировым аналогам. Но с точки зрения надежности и безопасности уже наблюдается некоторое отставание. Кроме того, модернизация имеющихся производств и внедрение новых технологий тормозится, в том числе, и отсутствием необходимого количества специалистов нужной квалификации.

Чего ожидать в будущем?

По прогнозам специалистов, в период с 2007 по 2015 год рост внутреннего спроса на электроэнергию составит, в среднем, 3,7-4,0% в год, а в период с 2016 по 2020 годы – 3,6-3,7%. Снижение роста объясняют модернизацией производства и внедрением менее энергоемких технологий. В связи с этим, энергетики каждый год должны вводить в строй мощности, генерирующие 130-200 млн. кВт.

Правительством РФ было принято решение о реализации нескольких программ, в рамках которых планируется снижение энергоемкости самых различных областей хозяйства:

- «Энергоэффективный квартал». В рамках программы планируется коренная модернизация систем энергоснабжения ряда мелких городов и отдельных микрорайонов. Впоследствии опыт будет распространен на системы всей страны;

- «Малая комплексная энергетика», в рамках которой планируется замена оборудования локальных генерирующих мощностей;

- «Инновационная энергетика», проект по внедрению новых технологий и решений.

Кроме того, значительное внимание уделяется атомной энергетике. Благодаря накопленному опыту у России есть все возможности сохранить конкурентоспособность на мировом рынке. Однако необходимо понимать, что 15 лет деградации не могли не сказаться на отрасли, так что сегодня ей необходимы значительные инвестиции.

Согласно государственным планам, в 2015 году рост генерирующих мощностей АЭС должен достигнуть 34-36 ГВт, а к 2020 году – 51-53 ГВт. Начиная со следующего десятилетия, запланирован постепенный переход к новой платформе, основанной на эксплуатации реакции быстрых нейтронов и замкнутом топливном цикле.

Как бы то ни было, для решения проблем в энергетическом комплексе необходим значительный рост инвестиций, повышение энергоэффективности промышленности, а также расширение производства электроэнергии за счет альтернативных источников.

К сожалению, не так давно мы допустили одну довольно серьезную ошибку: разделение и приватизацию РАО «ЕЭС России». Планировалось, что если допустить к отрасли частный капитал, это простимулирует его вкладывать средства в развитие и модернизацию. Но этого не произошло. Владельцы генерирующих мощностей и сбытовых компаний продолжают эксплуатировать устаревшее оборудование, не желая вкладываться в модернизацию. Здесь, как и во многих других отраслях, действует одно и то же правило: ориентация на «быструю» прибыль и нежелание думать о будущем. Вложения в энергетический комплекс со стороны государства по-прежнему составляют 85-90% от общего числа. Выходит, что средства вкладывает государство, а прибыль получает частник.

В связи со всем этим нетрудно сделать вывод, что сегодня власть должна озаботиться внесением изменений в законодательство, которые были бы направлены на:

Повышение контроля за деятельностью компаний отрасли;

Установление определенных показателей прибыли, которые владелец компании обязан направлять на обновление основных фондов и внедрение новых технологий, или, как вариант, экономическое стимулирование модернизации за счет налоговых льгот и других послаблений;

Возвращение чиновников-специалистов к управлению госкомпаниями энергетического сектора. Это позволит повысить управляемость и лучше контролировать ситуацию. Мера, конечно, во многом спорная, но если частные управляющие не будут работать подобающим образом, ничего другого просто не останется.