Общие составляющие уровней временного ряда. Временной ряд

Понятие сезонных колебаний и сезонной составляющей

Методы распознавания типа тренда и оценки его параметров

Основные типы трендов

Виды и построение временных рядов

ТЕМА 6. ВРЕМЕННЫЕ РЯДЫ. ОСНОВНЫЕ ТИПЫ ТРЕНДОВ

План лекции:

Эконометрическую модель можно построить, используя 2 типа исходных данных:

1. данные, характеризующие совокупность различных объектов в определенный момент (периоды времени). Модели, построенные по этим данным, называются пространственными.

2. данные, характеризующие один объект за ряд последовательных периодов времени. Модели, построенные по этим данным, называются моделями временных рядов

В литературе встречаются также понятия ряда динамики или динамические ряды. Данные термины несколько отличаются по сущности от понятия временной ряд , поскольку не каждый ряд уровней за последовательные периоды времени на самом деле содержат динамику какого - либо показателя.

Термин динамика правильнее относить к изменениям, направленному развитию, наличию тенденций рассматриваемых показателей. Следовательно, временной ряд – это более общее понятии, включающее, как динамические, так и статистические последовательности уровней какого-либо показателя.

Временной ряд – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень состояния и изменения изучаемого явления.

Классификация временных рядов.

Каждый временной ряд включает 2 обязательных элемента:

2. конкретное значение показателей (уровень ряда)

Временной ряд различаю по следующим признакам:

1. повремени:

а) моментный ряд, характеризующий изучаемое явление в конкретный момент времени

б) интервальный, т.е., уровень ряда, характеризующий признак за определенный период времени

2. по форме представления:

а) абсолютных величин

б) относительных величин

в) средних величин

3. по расстоянию между датами или интервалами времени:

а) полные ряды, когда даты следуют друг за другом с равными интервалами-

б) неполные.

а) частных показателей, характеризующих явления односторонне, изолированных

б) ряды агрегированных показателей, т.е. характеризующих явления комплексно.

Каждый уровень временного ряда формируется под воздействием большого числа факторов. Условно их можно подразделить на 3 группы:

1) факторы, формирующие тенденцию ряда

2) факторы, формирующие цикличность колебаний ряда


3) случайные факторы

При статистическом изучении динамики, необходимо четко разделять 2 основных ее элемента:

1) тенденцию

2) колеблемость,

чтобы с помощью специальных показателей дать каждому из них, количественную характеристику

Колеблемость – это отклонение уровней отдельных периодов времени от тенденции динамики.

Тренд – это устойчивая тенденция во временном ряду, более или менее свободная от случайных колебаний.

Тенденции изменения показателей сложных общественных явлений только приближенно можно выразить тем или иным уравнением, линией тренда.

Во временных рядах обычно различают тенденции трех видов.

Тенденция среднего уровня выражается обычно с помощью ма­тематического уравнения линии, вокруг которой варьируют фактические уровни исследуемого явления. Уравнение имеет следующий вид: ƒ.

Смысл этой функции заключается в том, что значения тренда в отдельные моменты времени выступают математически­ми ожиданиями ряда динамики.

Тенденция дисперсии характеризует тенденцию изменения отклонений между эмпирическими уровнями и детерминированной компонентой ряда.

Тенденция автокорреляции характеризует связь между отдельными уровнями ряда динамики.

Общие составляющие компоненты временного ряда y или :

: Регулярная (основная) ком­понента, характе­ризующая общую тенденцию ряда (тренд)

v:Сезонная компо­нента (внутригодичные колеба­ния) в общем ви­де - циклическая составляющая

e: Случайная ком­понента (случай­ные отклонения).

Как видим, все компоненты, которые формируют уровень временного ряда, подразделяются на три группы. Основной со­ставляющей является тренд. Значения сезонной и случайной компонент остаются после выделения из него трендовой состав­ляющей.

Если все составляющие компоненты найдены верно, то ма­тематическое ожидание случайной компоненты равно нулю и ее колебания около среднего значения постоянны.

При различных сочетаниях в изучаемом явлении этих элементов, временной ряд может иметь различные формы:

1) большинство временных рядов имеет тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Данные факторы, взятые в отдельности могут оказывать разнонаправленные воздействия, однако в совокупности они формируют его возрастающую или убывающую тенденцию.

2) изучаемые показатели могут быть подвержены циклическим колебаниям, они могут носить сезонный характер.

3) Некоторые временные ряды не содержат тенденции и циклические компоненты, а каждый их следующий уровень образуется, как сумма среднего уровня ряда и некоторые случайные компоненты.

В реальных условиях временной ряд содержит чаще всего 3 компонента и каждый уровень ряда формируется под воздействием тенденции, сезонных колебаний, и случайной компоненты.

Уровни временного ряда можно представить как сумму или произведение всех его составляющих компонент (трендовой, сезонной и случайной). Модель, в которой все компоненты ряда представлены как сумма этих составляющих, называют ад­дитивной. Если факторы влияния представлены как произведе­ние составляющих, то модель называют мультипликативной.

Основной задачей эконометрики при исследовании временного рядя является количественное выражение каждой из вышеперечисленных компонент для дальнейшего использования полученной информации. (для прогнозирования будущих значений ряда или построения модели двух или более временных рядов).

Большинство эконометрических моделей строится как динамические эконометрические модели. Это означает, что моделирование причинно-следственных связей между переменными осуществляется во времени, а исходные данные представлены в форме временных рядов.

Временной ряд х t (t=1; n ) – ряд значений какого-либо показателя за несколько последовательных промежутков времени.

Каждый временной ряд х t складывается из следующих основных составляющих (компонентов):

  1. Тенденции, характеризующей общее направление динамики изучаемого явления. Аналитически тенденция выражается некоторой функцией времени, называемой трендом (Т ).
  2. Циклической или периодической составляющей, характеризующей циклические или периодические колебания изучаемого явления. Колебания представляют собой отклонения фактических уровней ряда от тренда. Объем продаж некоторых товаров подвержен сезонным колебаниям. Сезонные колебания (S ) – периодические колебания, которые имеют определенный и постоянный период равный годовому промежутку. Конъюнктурные колебания (К) связаны с большими экономическими циклами, период таких колебаний – несколько лет.
  3. Случайной составляющей, которая является результатом воздействия множества случайных факторов (Е ).
Тогда уровень ряда можно представить как функцию от этих составляющих (компонентов): =f(T, K, S, E).

В зависимости от взаимосвязи между составляющими может быть построена либо аддитивная модель : =T+K+S+E, либо мультипликативная модель : =T·K·S·E ряда динамики.

Для определения состава компонентов (структуры временного ряда) в модели временного ряда строят автокорреляционную функцию.
Автокорреляция – корреляционная связь между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L - лаг). То есть, автокорреляция - это связь между рядом: x 1 , x 2 , ... x n-l и рядом x 1+l , x 2+l , ...,x n , где L - положительное целое число. Автокорреляция может быть измерена коэффициентом автокорреляции:
,
где ,
– средний уровень ряда (x 1+L , x 2+L ,...,x n ),
средний уровень ряда (x 1 , x 2 ,..., x n-L),
s t , s t-L – средние квадратические отклонения, для рядов (x 1+L , x 2+L ,..., x n ) и (x 1 , x 2 ,..., x n-L ) соответственно.

Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L =1, то имеем коэффициент автокорреляции 1-ого порядка r t,t-1 , если L =2, то коэффициент автокорреляции 2-ого порядка r t,t- 2 и т.д. Следует учитывать, что с увеличением лага на единицу, число пар значений, по которым рассчитывается коэффициент автокорреляции уменьшается на 1. Поэтому обычно рекомендуют максимальный порядок коэффициента автокорреляции равный n /4.

Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (L), при котором автокорреляция (r t,t-L ) наиболее высокая, выявив тем самым структуру временного ряда .

  1. Если наиболее высоким оказывается значение коэффициента автокорреляции первого порядка r t,t- 1 , то исследуемый ряд содержит только тенденцию.
  2. Если наиболее высоким оказался коэффициент автокорреляции r t,t-L порядка L , то ряд содержит колебания периодом L .
  3. Если ни один из r t,t-L не является значимым, можно сделать одно из двух предположений:
    • либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;
    • либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.
Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой .

Для выявления закономерных колебаний внутри года при выполнении контрольной работы рекомендуется рассчитывать не меньше 4-х уровней коэффициентов автокорреляции.
Рассмотрим на примере как построить коррелограмму, чтобы определяется структуру временного ряда.
Пусть нам даны поквартальные данные об объеме выпуска некоторого товара некоторой фирмой –х (усл.ед.) за 3 года:


1993

1994

1995

1

2

3

4

1

2

3

4

1

2

3

4

410

560

715

500

520

740

975

670

705

950

1200

900

Чтобы построить коррелогорамму для нашего примера, исходный ряд динамики дополним рядами из уровней этого ряда, сдвинутыми во времени (таблица 6).
Таблица 6

t

1

2

3

4

5

6

7

8

9

10

11

12


х t

-

560

715

500

520

740

975

670

705

950

1200

900

r t,t-1 =0,537

x t-1

-

410

560

715

500

520

740

975

670

705

950

1200

х t

-

-

715

500

520

740

975

670

705

950

1200

900

r t,t-2 =0,085

х t-2

-

-

410

560

715

500

520

740

975

670

705

950

х t

-

-

-

500

520

740

975

670

705

950

1200

900

r t,t-3 =0,445

х t-3

-

-

-

410

560

715

500

520

740

975

670

705

х t

-

-

-

-

520

740

975

670

705

950

1200

900

r t,t-4 =0,990

х t-4

-

-

-

-

410

560

715

500

520

740

975

670

х t

-

-

-

-

-

740

975

670

705

950

1200

900

r t,t-5 =0,294

х t-5

-

-

-

-

-

410

560

715

500

520

740

975

Рассчитаем коэффициенты корреляции:
1-ого порядка для рядов х t и х t -1 ,
2-ого порядка для рядов х t и х t -2 ,
3-его порядка для рядов х t и х t -3 ,
4-ого порядка для рядов х t и х t -4,
5-ого порядка для рядов х t и х t -5

Результаты расчетов представлены в таблице 7.
Таблица 7


Лаг (порядок) – L

r t,t-L

Коррелограмма

1

0,537

****

2

0,085

*

3

0,445

***

4

0,990

*****

5

0,294

**

Вывод: в данном ряду динамики имеется тенденция (т.к. r t,t-1 =0,537 →1) и периодические колебания с периодом (L) равным 4, т.е. имеют место сезонные колебания (т.к. r t,t-4 =0,99 →1).

Построение модели временного ряда с сезонными колебаниями (аддитивная модель ).
Процесс построения модели временного ряда (х ), содержащего n уровней некоторого показателя за Z лет, с L сезонными колебаниями включает следующие шаги:
1) Выравнивание исходного ряда методом скользящей средней (х c ). Произведем выравнивание исходного ряда взятого из примера, рассмотренного выше, методом скользящей средней с периодом усреднения равным 3. Результаты представлены в таблице 9 (столбец 4).
2) Расчет значений сезонной составляющейS i , i=1;L , где L – число сезонов в году. Для нашего примера L =4 (сезоны - кварталы).
Расчет значений сезонных составляющих осуществляется после устранения тенденции из исходных уровней ряда: x-x c (столбец 5, таблица 9). Для дальнейшего расчета S i построим отдельную таблицу. Строки данной таблицы соответствуют сезонам, столбцы - годам. В теле таблицы находятся значения: x -x c . По этим данным рассчитываются средние оценки сезонных составляющих каждой строке (S c i) . Если сумма всех средних оценок равна нулю (), то данные средние и будут окончательными значениями сезонных составляющих (S i =S c i ). Если их сумма не равна нулю, то рассчитываются скорректированные значения сезонных составляющих вычитанием из средней оценки величины равной отношению суммы средних оценок к их общему числу (). Для нашего примера расчет значений S i представлен в таблице 8.
Таблица 8


Номер сезона

Год 1

Год 2

Год 3

Средняя оценка сезонной составляющей

Скорректированная оценка сезонной составляющей S i

1

-

-66,67

-70,00

-68,33

-67,15

2

-1,67

-5,00

-1,67

-2,78

-1,60

3

123,33

180 ,00

183,33

162,22

163,40

4

-78,33

-113,33

-

-95,83

-94,66

Итого




-4, 72

0

3) Устранение влияния сезонной составляющей из исходного ряда динамики : x S = x-S i . Результаты расчета x S для нашего примера представлены в столбце 6 таблицы 9.
4) Аналитическое выравнивание уровней x S (построение тренда): .
Расчет параметров при аналитическом выравнивании чаще всего производится с помощью метода наименьших квадратов (МНК). При этом поиск параметров для линейного уравнения тренда можно упростить, если отсчет времени производить так, чтобы сумма показателей времени изучаемого ряда динамики была равна нулю. Для этого вводится новая условная переменная времени t y , такая, что åt y =0. Уравнение тренда при этом будет следующим: .
При нечетном числе уровней ряда динамики для получения å t y =0 уровень, находящийся в середине ряда, принимается за условное начало отсчета времени (периоду или моменту времени, соответствующему данному уровню присваивается нулевое значение). Даты времени, расположенные левее этого уровня, обозначаются натуральными числами со знаком минус (-1 –2 –3 ...), а даты времени, расположенные правее этого уровня – натуральными числами со знаком плюс (1 2 3 ...).
Если число уровней ряда четное, периоды времени левой половины ряда (до середины) нумеруются –1, -3, -5 и т.д. А периоды правой половины - +1, +3, +5 и.т.д. При этом åt y будет равна 0.
Система нормальных уравнений (соответствующих МНК) преобразуется к виду:

Отсюда параметры уравнения рассчитываются по формулам:
.
Интерпретация параметров линейного уравнения тренда :
- уровень ряда за период времени t у =0;
- средний абсолютный прирост уровня ряда за единичный промежуток времени.
В нашем примере четное число уровней ряда: n=12. Следовательно, условная переменная времени для 6-ого элемента ряда будет равна –1, а для 7-ого +1. Значения переменной i y содержатся во 2-ом столбце таблицы 9.
Параметры линейного тренда будут: =14257,5/572=24,93; =8845/12=737,08. Это значит, что с каждым кварталом объем выпуска товара в среднем увеличивается на 2∙28,7 усл.ед. А средний за период с 1993 по 1995гг объем выпуска составил 738,75 усл.ед.
Рассчитаем значения трендовой компоненты по формуле (столбец 7 таблицы 9).
5) Учет сезонной составляющей в выровненных уровнях ряда (=T+S ). Результаты расчета для нашего примера представлены в столбце 8 таблицы 9.
6) Расчет абсолютной ошибки временного ряда (Е= x- ) осуществляется для оценки качества полученной модели. Результаты расчета для нашего примера представлены в столбце 9 таблицы 9.
Таблица 9

T

t у

x

x c

x- x c

x s

T


E

1

2

3

4

5

6

7

8

9

1

-11

410

-

-

477,15

462,9 0

395,75

14,25

2

-9

560

561,67

-1,67

561,60

512,75

511,15

48,85

3

-7

715

591,67

123,33

551,60

562,60

726,00

-11,01

4

-5

500

578,33

-78,33

594,65

612,45

517,80

-17,80

5

-3

520

586,67

-66,67

587,15

662,31

595,15

-75,15

6

-1

740

745 ,00

-5 ,00

741,60

712,16

710,56

29,44

7

1

975

795 ,00

180 ,00

811,60

762,00

925,41

49,59

8

3

670

783,33

-113,33

764,65

811,86

717,21

-47,21

9

5

705

775 ,00

-70 ,00

772,15

861,71

794,56

-89,56

10

7

950

951,67

-1,67

951,60

911,56

909,97

40,03

11

9

1200

1016,67

183,33

1036, 60

961,41

1124,82

75,18

12

11

900

-

-

994,65

1011,27

916,61

-16,61

Итого


8845



8845 ,00

8845 ,00

8845 ,00

16,61

Значимость параметров линейного уравнения тренда (Т ) определяется на основе t -критерия Стьюдента также как и в линейном парном регрессионном анализе.

Прогнозирование по аддитивной модели .
Пусть требуется дать прогноз уровня временного ряда на период (n +1). Точечный прогноз значения уровня временного ряда х n+1 в аддитивной модели есть сумма трендовой компоненты и сезонной компоненты (соответствующей i –ому сезону прогноза): =T n+1 +S i .
Для построения доверительного интервала прогноза нужно рассчитать среднюю ошибку прогноза:
m р = ,
где h - число параметров в уравнении тренда;
t yp – значение условной переменной времени для периода прогнозирования.
Затем рассчитаем предельную ошибку прогноза: D р =t a · m р ,
где t a - коэффициент доверия, определяемый по таблицам Стьюдента по уровню значимости α и числу степеней свободы равным (n-h ).
Окончательно получим: (-D р; +D р).

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Временной ряд – это набор наблюдений, упорядоченных во времени.

Классификация временных рядов

1. Моментные и интервальные временные ряды

Моментным рядом называется такой ряд, уровни которого характеризуют состояние явления на определенные даты (моменты времени).Примерами моментных рядов могут быть последовательность показателей численности населения на начало года, поголовье скота в фермерских хозяйствах на 1 декабря или 1 июня за несколько лет, величина запаса какого-либо материала на начало периода и т.д.

Интервальный (периодический) временной ряд – последовательность, в которой уровень явления относят к результату, накопленному или вновь произведенному за определенный интервал времени. Таковы, например, ряды показателей объема продукции предприятия по месяцам года, количества отработанных человеко-дней по отдельным периодам (месяцам, кварталам, полугодиям, годам, пятилетиям и т.п.) и т.д. Также примером такого ряда могут служить данные о динамике добычи нефти в Российской Федерации.

Полные и неполные временные ряды

Ряды следующих друг за другом периодов или следующих через определенные промежутки дат называются равноотстоящими или полными.

Если же в рядах даются прерывающиеся периоды или неравномерные промежутки между датами, то ряды называются неравноотстоящими или неполными.

Временные ряды абсолютных, относительных, средних величин

Временные ряды абсолютных величин более полно характеризуют развитие процесса или явления, например: объема валового внутреннего продукта в целом, грузооборота транспорта, инвестиций в основной капитал, производства продукции животноводства и т.д.

Ряды относительных величин могут характеризовать во времени темпы роста (или снижения) определенного показателя; изменение удельного веса того или иного показателя в совокупности; изменение показателей интенсивности отдельных явлений, например, удельный вес приватизированных предприятий в той или иной отрасли; производство продукции надушу населения; структура инвестиций в основной капитал по отраслям экономики и др.

Временные ряды средних величин служат для характеристики изменения уровня явления, отнесенного к единице совокупности, например: данные о среднегодовой численности занятых в экономике, о средней урожайности отдельных сельскохозяйственных культур, о средней заработной плате в отдельных отраслях и т.д.

Временные ряды частных и агрегированных показателей .

Частные показатели характеризуют изучаемое явление односторонне, изолированно. Например, среднесуточный объем выпуска промышленной продукции дает возможность оценить динамику промышленного производства, численность граждан, состоящих на учете в службе занятости; показывает эффективность социальной политики государства; остатки наличных денег у населения и вклады населения в банках отражают платежеспособность населения и т.д.

Агрегированные показатели основаны на частных показателях и характеризуют изучаемый процесс комплексно. Так, чтобы иметь представление о состоянии экономики в России в целом, необходимо определять агрегированный показатель экономической конъюнктуры, включающий в себя и вышеперечисленные частные показатели.Их определяют также при исследовании эффективности производства, технического уровня предприятий, качества продукции, экологического состояния. Широкое применение последних, стало возможным с развитием факторного и компонентного анализа.

Временные ряды по предметной области:

Демографические

Политические

Экономические

Образовательные

Медицинские

Социальные

Правила формирования временных рядов:

А) единицы измерения для всех точек данных должны совпадать;

Б) методика вычисления и технология сбора данных временного ряда должна быть едина;

В) сбор данных и формирование временного ряда должно осуществляться для одного и того же объекта;

Г) фиксирование показателя должно совпадать с моментом времени.

Динамика изменение, направленное развитие процесса во времени.

Тенденция устойчивая закономерность изменения процесса во времени.

Тренд кривая, описывающая закономерность изменения динамического процесса, уравнение кривой.

Прогнозирование по тренду процесс получения прогнозных оценок динамического процесса на основе тренда

Абсолютный базисный прирост показывает прирост уровней ряда относительно базового периода времени y0 (на сколько), выражается в натуральных единицах измерения

В качестве базовых могут рассматриваться показатели различных периодов.

Например, момент начала вложения капитала, либо запуска проекта.

Абсолютный цепной прирост показывает прирост уровня ряда относительно предыдущего периода времени, выражается в натуральных единицах измерения.

Варианты значений цепного прироста:

1. Сyt = 0, t - уровни ряда постоянны, т.е. yt = const ,t и, соответственно, временная динамика отсутствует. Процесс стационарен.

2. Сyt = const , t - временная динамика имеет линейную тенденцию с равными темпами роста или падения уровней ряда. Процесс линейный.

3. Сyt >= t - возрастание уровней ряда на каждый период. Процесс возрастающий.

4. Сyt <= t - убывание уровней ряда на каждый период. Процесс убывающий .

Ускорение динамики показывает ускорение или замедление тенденции изучаемого процесса/

Рассчитывается по интервалам равной длительности и только для цепных показателей.

Варианты значений ускорения динамики:

1. Ayt>=0 - рост уровня ряда постепенно замедляется или ускоряется его падение. Процесс возрастающий с затуханием, либо скорый, убывающий

2. Ayt<=0 - рост уровня ряда постепенно ускоряется или замедляется его падение. Процесс убывающий с затуханием, либо скорый, возрастающий

3. Ayt=0 - цепной темп роста постоянен и, соответственно, временная динамика имеет линейную тенденцию с равными темпами роста или падения уровней ряда. Линейный процесс

4. Ayt = const . В этом случае временная динамика имеет параболическую тенденцию. Параболический процесс.

1. Линейная тенденция. 2. Стационарный процесс. Отсутствие динамики. 3. Параболическая тенденция. 4. Периодическая тенденция.

Базисный темп роста характеризует в относительных единицах прирост показателя в период времени t относительно базового уровня, выражается в процентах. Показывает во сколько раз увеличился уровень временного ряда относительно базового.

Цепной темп роста показывает увеличение уровня ряда относительно предыдущего значения, выражается в процентах.

Этапы построения модели временного ряда .

1. Сбор исходных данных и их предварительная обработка

2. Анализ данных

2.1. Расчет основных показателей динамики

2.2. Сглаживание рядов данных (фильтрация)

2.3. Оценка устойчивости уровней ряда

2.4. Оценка устойчивости динамики

2.5. Статистический анализ

3. Синтез модели

3.1. Идентификация модели

4. Использование модели

4.1. Точечный прогноз

4.2. Интервальный прогноз

Анализ данных временного ряда

Цель анализа выявить особенности изучаемого процесса, определить наличие временной динамики и ее характер.

2.Выполнить сглаживание (фильтрацию) данных и определить точки “выброса”.

3. Проанализировать устойчивость уровней рядов данных и временной динамики.

4. Выполнить статистический анализ данных и определить характер временной динамики.

Методы анализа временных рядов

1. Анализ показателей, характеризующих тенденцию динамики

Абсолютный временной ряд

Относительный временной ряд

2. Прикладные методы (по предметной области)

Социальные

Финансовые

Медицинские

3. Статистический анализ

Корреляционный анализ

Кластерный анализ

Сглаживание «фильтрация»

4. Анализ устойчивости

Устойчивость уровней ряда

Устойчивость динамики

5. Вейвлет-анализ (дискретное вейвлет-преобразование)

6. R/S -анализ

Различают следующие типы трендов:

Детерминированный, если значения членов временного ряда могут быть точно определены какой- либо математической функцией

где a1 , a2 , a3 - параметры, постоянные коэффициенты модели; t - время.

Стохастический (случайный процесс), если уровни ряда носят случайный характер:

где - начальное значение; - случайная величина (прирост уровней ряда).

- смешанный, включает элементы детерминированного и стохастического тренда:

Где a1 , a2 , q , b , w - постоянные коэффициенты; ut - случайная величина.

Стохастический процесс называется стационарным, если его свойства не изменяются во времени, в частности он имеет постоянное математическое ожидание, дисперсию и автоковариацию с некоторым запаздыванием k .

Задача прогнозирования заключается в выявлении компонентов кси t, et, исходного временного ряда xt, а также принципов изменения во времени (тренда).

Прогнозная модель временного ряда – модель, аппроксимирующая, приближающая с достаточной степенью точности тренд.

Тема 9. Статистическое изучение динамики

Понятие и классификация временных рядов

Процесс развития социально-экономических явлений во времени принято называть динамикой. Для отображения динамики строят временные ряды (ряды динамики). Временной ряд представляет собой совокупность значений статистического показателя, расположенных в хронологическом порядке. Составными элементами ряда динамики являются:

1) отдельные значения показателя, которые называются уровнями ряда (y );

2) периоды или моменты (даты) времени (t )/

Существуют различные виды временных рядов. Их можно классифицировать по различным основаниям:

1)по способу выражения уровней ряда:

– ряды абсолютных величин;

– ряды относительных величин;

– ряды средних величин.

2) по способу представления хронологии:

– моментные ряды;

– интервальные ряды.

В моментных временных рядах уровни ряда выражают состояние явления на определенный момент времени (начало месяца, квартала, года и т.д.). Например, численность поголовья крупного рогатого скота в РФ на 1 января каждого года. В интервальных временных рядах уровни ряда выражают состояние явления за определенные интервалы (периоды) времени (за месяц, за квартал, за год). Например, ежегодный пассажирооборот железнодорожным транспортом.

Отдельные уровни интервального временного ряда можно суммировать. Отдельные уровни моментного временного ряда содержат элементы повторного счета, поэтому их суммирование бессмысленно.

3) по расстоянию между уровнями:

– временные ряды с равноотстоящими уровнями во времени;

– временные ряды с неравно отстоящими уровнями во времени;

4) по наличию основной тенденции в ряду:

– стационарные временные ряды;

– нестационарные временные ряды.

Стационарным называется временной ряд, если математическое ожидание значения признака и дисперсия постоянны, не зависят от времени. Нестационарные временные ряды имеют некоторую тенденцию развития.

5) по числу показателей:

– изолированные временные ряды;



– многомерные временные ряды (комплексные).

Если ведется анализ во времени одного показателя, то ряд динамики изолированный. В многомерном ряду представлена динамика нескольких показателей, характеризующих одно явление.

Сопоставимость уровней и смыкание рядов динамики

Важнейшим условием правильного построения временного ряда является сопоставимость всех входящих в него уровней. Проблема сопоставимости данных остро стоит в рядах динамики, потому что они охватывают значительные периоды времени, за которые могли произойти изменения и привести к несопоставимости статистических данных. Прежде чем анализировать динамический ряд необходимо убедиться в сопоставимости уровней ряда и при отсутствии последней добиваться ее, пользуясь дополнительными расчетами.

Основные условия сопоставимости уровней ряда динамки :

1) одинаковые единицы измерения показателей;

2) единая методика расчета показателей;

3) одинаковые территориальные границы;

4) одинаковая полнота охвата различных частей явления;

5) учет изменения цен.

Это условие необходимо соблюдать в процессе сбора и обработки данных, либо путем их перерасчета. Приведение уровней ряда к сопоставимому виду осуществляется методом смыкания рядов динамики . Под смыканием понимают объединение в один ряд (более длинный) двух или нескольких рядов динамики, уровни которых исчислены по разной методологии или разным территориальным границам. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах).

Имеются данные о производстве продукции предприятия, методика получения которых в течение рассматриваемого периода претерпела некоторые изменения (табл. 9.1).

Таблица 9.1 – Динамика объема производства продукции, млн. руб.

Показатели
По старой методике 19,1 19,7 20,0 21,2
По новой методике 22,8 23,6 24,5 26,2 28,1
Сомкнутый (сопоставимый) ряд 21,0 21,7 22,0 22,8 23,6 24,5 26,2 28,1

Для анализа динамики объемов производства продукции за 2006-2013 гг. необходимо сомкнуть (объединить) исследуемые два ряда в один. Для этого следует пересчитать данные 2006-2008 гг. по новой методике. На основе данных за 2009 г. найдем коэффициент перевода (k ) как соотношение между ними:

k = 22,8 / 21,2 = 1,1,

Умножая на полученный коэффициент данные за 2006-2008 гг., приводим их в сопоставимый вид с последующими уровнями, таким образом, получаем сомкнутый (сопоставимый) ряд.

Показатели изменения уровней временного ряда

Анализ временных рядов включает расчет различных показателей, характеризующих изменение уровней ряда. Показатели, используемые для анализа временных рядов, можно разделить на абсолютные, относительные и обобщающие (средние) (рис. 9.1).

Рис. 9.1. Основные показатели изменения уровней временного ряда

Абсолютные и относительные показатели могут быть рассчитаны на цепной или базисной основе. При расчете цепных показателей каждый уровень ряда сравнивается с непосредственно ему предшествующим. При расчете базисных показателей каждый уровень ряда сравнивается с одним и тем же уровнем, принятым за базу сравнения. Обычно в качестве базы сравнения принимается первый уровень временного ряда.

Рассмотрим формулы для расчета основных показателей изменения уровней временного ряда.

Абсолютный прирост y ) определяется как разность двух сравниваемых уровней.

Абсолютный прирост цепной :

Δy ц = y i – y i – 1 ,

Абсолютный прирост базисный :

Δy б = y i – y 0 ;

где y i i -й уровень ряда;

y 0 – базисный уровень ряда.

Темп роста (Т р) определяется как отношение двух сравниваемых уровней временного ряда и выражается в процентах.

Темп роста цепной :

Темп роста базисный:

Темп роста может быть выражен в виде коэффициента (К р). В этом случае он показывает, во сколько раз данный уровень ряда больше (или меньше) предшествующего (или базисного) уровня.

Темп прироста (Т пр) показывает, на какую долю (или процент) данный уровень ряда больше (или меньше) предыдущего или базисного.

Темп прироста цепной :

.

Темп прироста базисный:

.

Темп прироста можно вычислить также путем вычитания из темпов роста 100%, то есть Т пр = Т р –100.

Абсолютное значение одного процента прироста () показывает, сколько абсолютных единиц приходится на 1% прироста:

.

Средние величины временного ряда – это обобщающие характеристики развития явления за изучаемый период.

Средний уровень временного ряда () рассчитывается по средней хронологической. Средней хронологической называется средняя, исчисленная из значений, изменяющихся во времени. Методы расчета среднего уровня интервального и моментного рядов динамики различны.

Средний уровень интервального ряда с равноотстоящими уровнями находится по формуле средней арифметической простой:

где n – число уровней ряда.

Средний уровень моментного ряда с равноотстоящими уровнями определяют по формуле средней хронологической простой:

,

Средний абсолютный прирост:

.

Средний темп роста:

Средний темп прироста:

.

Для комплексного анализа временного ряда необходимо использовать всю систему показателей.

Пример

Проанализировать динамику производства легковых автомобилей в городе N (табл. 9.2).

Таблица 9.2 - Динамика производства легковых автомобилей в городе N

Год Тыс. шт. Абсолютные приросты, тыс. шт. Темпы роста, % Темпы прироста Абсолютное значение 1% прироста, тыс. шт.
цепные базисные цепные базисные цепные базисные
835,1 867,4 986,2 836,0 955,5 969,0 1000,0 - 32,3 118,8 -152,2 119,5 13,5 31,0 - 32,3 151,1 0,9 120,4 133,9 164,9 - 103,87 113,70 84,77 114,29 101,41 103,20 - 103,87 118,09 100,10 114,42 116,03 119,75 - 3,87 13,70 -28,90 14,29 1,41 3,20 - 3,87 18,09 0,10 14,42 16,03 19,75 - 8,35 8,67 5,27 8,36 9,56 9,69
Итого 6449,2 164,9 - - - - - -

Например, для 2009 г.

Это значит, что за период 2007-2013 гг. в среднем каждый год объем производства легковых автомобилей увеличивался на 2,3%.

1.7 Аддитивная и мультипликативная модели временного ряда

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.

Простейший подход- расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Общий вид мультипликативной модели выглядит так:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений трендовой, циклической и случайной компонент для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты.

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной или мультипликативной модели.

4. Аналитическое выравнивание уровней и расчет значений тренда с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений или

6. Расчет абсолютных и относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.


После удаления тенденции (тренда) из временного ряда мы получим стационарный временной ряд. Его можно рассматривать как выборку Т последовательных наблюдений через равные промежутки времени из существенно более продолжительной (генеральной последовательности случайных величин. При этом статистические выводы делаются относительно вероятностной структуры генеральной последовательности. Такую последовательность удобно считать простирающейся неограниченно в будущее и, возможно, в прошлое. Последовательность случайных величин у 1 , у 2 , . . . или. . ., у -1 , у 0 , у 1 , . . . называется случайным процессом с дискретным параметром времени.

Несмотря на полную произвольность вероятностных моделей последовательностей случайных величин, полезно отличать случайные процессы от множества случайных величин этого процесса, учитывая понятие времени. Грубо говоря, в случайном процессе наблюдения, разделённые небольшими промежутками времени, близки по значениям в отличие от наблюдений, далеко отстоящих друг от друга во времени. Более того, модель значительно упрощается после расширения конечной последовательности наблюдений до бесконечной.

Одним из таких упрощений является свойство стационарности . Будем считать, что поведение множества случайных величин с вероятностной точки зрения не зависит от времени.

Случайный процесс y(t) с непрерывным параметром времени можно определить для 0 ≤ t < ∞ или -∞ < t < ∞ и рассматривать с привлечением вероятностной меры на пространстве функций y(t). Выборка из такого процесса состоит из наблюдений в конечном числе точек времени, или из непрерывных наблюдений в интервале времени.

Наблюдение процесса, часто называемое реализацией , есть точка в соответствующем бесконечномерном пространстве, где определена вероятностная мера. Вероятность определяется на некоторых множествах, называемых измеримыми. Этот класс множеств включает вместе с любым множеством его дополнение, а также объединение и пересечение счётного числа множеств этого класса; вероятностная мера на этом классе множеств определяется таким образом, что вероятность объединения непересекающихся множеств равна сумме вероятностей отдельных множеств.

Практически мы интересуемся вероятностями, которые связаны с конечным числом случайных величин. Эти вероятности включают в себя функцию совместного распределения.

1.9 Применение быстрого преобразования Фурье к стационарному временному ряду

Одно из назначений преобразования Фурье- выделять частоты циклических составляющих временного ряда, содержащего случайную компоненту.

Пусть число данных N представимо в виде N = N 1 N 2 . Тогда можно записать

t = t 1 + (t 2 -1)N 1 , t 1 = 1, . . ., N 1 , t 2 = 1, . . ., N 2 ;

j = j 1 + j 2 N 2 , j 1 = 0, . . ., N 2 – 1 , j 2 = 0, . . ., N 1 - 1;

Отметим, что a N – j = a j и b N – j = - b j . Искомые коэффициенты являются соответственно действительной и мнимой частями суммы:


Для их отыскания вычислим сначала величины

Для каждой пары (j 1 , t 1) , j 1 = 0, . . ., N 2 – 1 и t 1 = 0, . . ., N 1 . Поскольку

и ,

то существует около N 1 N 2 /2 = N/2 таких пар. После этого находятся действительная и мнимая части суммы (1.9.1):

для j = 0,1, . . ., . Число операций умножения приближённо равно N 2 N в первых суммах и 2N 1 N во вторых суммах, так что число операций умножения в целом составляет примерно N (N 2 + 2N 1). В то же время число произведений в определении коэффициентов a j и b j , j=0,1, . . ., примерно равно N 2 . ,


Для каждого момента (периода) времени t = 1: N значение компоненты e t для аддитивной модели определяется как

, - сумма циклической и трендовой компонент, а для мультипликативной модели: - произведение циклической и трендовой компонент.

Ошибки измерений нам неизвестны, а известны лишь эмпирические остатки.

Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками метода наименьших квадратов остатки e t должныбыть случайными. Однако при моделировании временных рядов часто встречаются ситуация, когда остатки содержат тенденцию или циклические колебания. Это свидетельствует о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции остатков.

Автокорреляция остатков может быть вызвана следующими причинами, имеющими различную природу. Во-первых , иногда она связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака. Во-вторых , в ряде случаев причину автокорреляции остатков следует искать в формулировке модели. Модель может не включать фактор, существенное воздействие на результат, влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени t. Кроме того, в качестве таких существенных факторов могут выступать лаговые значения переменных, включённых в модель.

Либо модель не учитывает несколько второстепенных факторов, совместное влияние которых на результат существенно в виду совпадения тенденций их изменения или фаз циклических колебаний.

Существует два наиболее распространённых метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – использование критерия Дарбина – Уотсона.

Дж. Дарбин и Г. Уотсон построили таблицы, дающие нижние и верхние пределы порогов значимости. Эти таблицы достаточны для большинства конкретных ситуаций. Рассмотрим логические основания критерия.

Выражение

(1.10.1)

представляет собой «отношение фон Неймана», применённое к остаткам оценки. Этот критерий имеет эффективность аналогичную таковой для критерия r 1 , первого коэффициента автокорреляции остатков. Из предыдущей главы известно, что этот критерий будет особенно мощным, если ошибки следуют авторегрессинному процессу первого порядка. Таким образом, он, по-видимому, хорошо приспособлен для экономических моделей.