Сумма ряда в точке. Как найти сумму ряда

Ответ : ряд расходится.

Пример №3

Найти сумму ряда $\sum\limits_{n=1}^{\infty}\frac{2}{(2n+1)(2n+3)}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{2}{(2n+1)(2n+3)}$. Составим n-ю частичную сумму ряда, т.е. просуммируем первые $n$ членов заданного числового ряда:

$$ S_n=u_1+u_2+u_3+u_4+\ldots+u_n=\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}. $$

Почему я пишу именно $\frac{2}{3\cdot 5}$, а не $\frac{2}{15}$, будет ясно из дальнейшего повествования. Однако запись частичной суммы ни на йоту не приблизила нас к цели. Нам ведь нужно найти $\lim_{n\to\infty}S_n$, но если мы просто запишем:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{2}{3\cdot 5}+\frac{2}{5\cdot 7}+\frac{2}{7\cdot 9}+\frac{2}{9\cdot 11}+\ldots+\frac{2}{(2n+1)(2n+3)}\right), $$

то эта запись, совершенно верная по форме, ничего нам не даст по сути. Чтобы найти предел, выражение частичной суммы предварительно нужно упростить.

Для этого есть стандартное преобразование, состоящее в разложении дроби $\frac{2}{(2n+1)(2n+3)}$, которая представляет общий член ряда, на элементарные дроби. Вопросу разложения рациональных дробей на элементарные посвящена отдельная тема (см., например, пример №3 на этой странице). Раскладывая дробь $\frac{2}{(2n+1)(2n+3)}$ на элементарные дроби, будем иметь:

$$ \frac{2}{(2n+1)(2n+3)}=\frac{A}{2n+1}+\frac{B}{2n+3}=\frac{A\cdot(2n+3)+B\cdot(2n+1)}{(2n+1)(2n+3)}. $$

Приравниваем числители дробей в левой и правой частях полученного равенства:

$$ 2=A\cdot(2n+3)+B\cdot(2n+1). $$

Чтобы найти значения $A$ и $B$ есть два пути. Можно раскрыть скобки и перегруппировать слагаемые, а можно просто подставить вместо $n$ некие подходящие значения. Сугубо для разнообразия в этом примере пойдём первым путём, а следующем - будем подставлять частные значения $n$. Раскрывая скобки и перегруппировывая слагаемые, получим:

$$ 2=2An+3A+2Bn+B;\\ 2=(2A+2B)n+3A+B. $$

В левой части равенства перед $n$ стоит ноль. Если угодно, левую часть равенства для наглядности можно представить как $0\cdot n+ 2$. Так как в левой части равенства перед $n$ стоит ноль, а в правой части равества перед $n$ стоит $2A+2B$, то имеем первое уравнение: $2A+2B=0$. Сразу разделим обе части этого уравнения на 2, получив после этого $A+B=0$.

Так как в левой части равенства свободный член равен 2, а в правой части равенства свободный член равен $3A+B$, то $3A+B=2$. Итак, имеем систему:

$$ \left\{\begin{aligned} & A+B=0;\\ & 3A+B=2. \end{aligned}\right. $$

Доказательство будем проводить методом математической индукции. На первом шаге нужно проверить, выполнено ли доказываемое равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ при $n=1$. Мы знаем, что $S_1=u_1=\frac{2}{15}$, но даст ли выражение $\frac{1}{3}-\frac{1}{2n+3}$ значение $\frac{2}{15}$, если подставить в него $n=1$? Проверим:

$$ \frac{1}{3}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2\cdot 1+3}=\frac{1}{3}-\frac{1}{5}=\frac{5-3}{15}=\frac{2}{15}. $$

Итак, при $n=1$ равенство $S_n=\frac{1}{3}-\frac{1}{2n+3}$ выполнено. На этом первый шаг метода математической индукции закончен.

Предположим, что при $n=k$ равенство выполнено, т.е. $S_k=\frac{1}{3}-\frac{1}{2k+3}$. Докажем, что это же равенство будет выполнено при $n=k+1$. Для этого рассмотрим $S_{k+1}$:

$$ S_{k+1}=S_k+u_{k+1}. $$

Так как $u_n=\frac{1}{2n+1}-\frac{1}{2n+3}$, то $u_{k+1}=\frac{1}{2(k+1)+1}-\frac{1}{2(k+1)+3}=\frac{1}{2k+3}-\frac{1}{2(k+1)+3}$. Согласно сделанному выше предположению $S_k=\frac{1}{3}-\frac{1}{2k+3}$, поэтому формула $S_{k+1}=S_k+u_{k+1}$ примет вид:

$$ S_{k+1}=S_k+u_{k+1}=\frac{1}{3}-\frac{1}{2k+3}+\frac{1}{2k+3}-\frac{1}{2(k+1)+3}=\frac{1}{3}-\frac{1}{2(k+1)+3}. $$

Вывод: формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при $n=k+1$. Следовательно, согласно методу математической индукции, формула $S_n=\frac{1}{3}-\frac{1}{2n+3}$ верна при любом $n\in N$. Равенство доказано.

В стандартном курсе высшей математики обычно довольствуются "вычёркиванием" сокращающихся слагаемых, не требуя никаких доказательств. Итак, мы получили выражение для n-й частичной суммы: $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Найдём значение $\lim_{n\to\infty}S_n$:

Вывод: заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Второй способ упрощения формулы для частичной суммы.

Честно говоря, я сам предпочитаю именно этот способ:) Давайте запишем частичную сумму в сокращённом варианте:

$$ S_n=\sum\limits_{k=1}^{n}u_k=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}. $$

Мы получили ранее, что $u_k=\frac{1}{2k+1}-\frac{1}{2k+3}$, поэтому:

$$ S_n=\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)}=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right). $$

Сумма $S_n$ содержит конечное количество слагаемых, поэтому мы можем переставлять их так, как нам заблагорассудится. Я хочу сначала сложить все слагаемые вида $\frac{1}{2k+1}$, а уж затем переходить к слагаемым вида $\frac{1}{2k+3}$. Это означает, что частичную сумму мы представим в таком виде:

$$ S_n =\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\ldots+\frac{1}{2n+1}-\frac{1}{2n+3}=\\ =\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+1}-\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\ldots+\frac{1}{2n+3}\right). $$

Конечно, развёрнутая запись крайне неудобна, поэтому представленное выше равенство можно оформить более компактно:

$$ S_n=\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}. $$

Теперь преобразуем выражения $\frac{1}{2k+1}$ и $\frac{1}{2k+3}$ к одному виду. Я полагаю удобным приводить к виду большей дроби (хотя можно и к меньшей, это дело вкуса). Так как $\frac{1}{2k+1}>\frac{1}{2k+3}$ (чем больше знаменатель, тем меньше дробь), то будем приводить дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$.

Выражение в знаменателе дроби $\frac{1}{2k+3}$ я представлю в таком виде:

$$ \frac{1}{2k+3}=\frac{1}{2k+2+1}=\frac{1}{2(k+1)+1}. $$

И сумму $\sum\limits_{k=1}^{n}\frac{1}{2k+3}$ теперь можно записать так:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Если равенство $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ не вызывает вопросов, то пойдём далее. Если же вопросы есть, то прошу развернуть примечание.

Как мы получили преобразованную сумму? показать\скрыть

У нас был ряд $\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$. Давайте вместо $k+1$ введём новую переменную, - например, $t$. Итак, $t=k+1$.

Как изменялась старая переменная $k$? А изменялась она от 1 до $n$. Давайте выясним, как же будет изменяться новая переменная $t$. Если $k=1$, то $t=1+1=2$. Если же $k=n$, то $t=n+1$. Итак, выражение $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}$ теперь стало таким: $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$.

$$ \sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}. $$

У нас есть сумма $\sum\limits_{t=2}^{n+1}\frac{1}{2t+1}$. Вопрос: а не всё ли равно, какую букву использовать в этой сумме? :) Банально записывая букву $k$ вместо $t$, получим следующее:

$$ \sum\limits_{t=2}^{n+1}\frac{1}{2t+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Вот так и получается равенство $\sum\limits_{k=1}^{n}\frac{1}{2(k+1)+1}=\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$.

Таким образом, частичную сумму можно представить в следующем виде:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}. $$

Заметьте, что суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ и $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$ отличаются лишь пределами суммирования. Сделаем эти пределы одинаковыми. "Забирая" первый элемент из суммы $\sum\limits_{k=1}^{n}\frac{1}{2k+1}$ будем иметь:

$$ \sum\limits_{k=1}^{n}\frac{1}{2k+1}=\frac{1}{2\cdot 1+1}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}. $$

"Забирая" последний элемент из суммы $\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}$, получим:

$$\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2(n+1)+1}=\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}.$$

Тогда выражение для частичной суммы примет вид:

$$ S_n=\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n+1}\frac{1}{2k+1}=\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\\ =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\frac{1}{2n+3}=\frac{1}{3}-\frac{1}{2n+3}. $$

Если пропустить все пояснения, то процесс нахождения сокращённой формулы для n-й частичной суммы примет такой вид:

$$ S_n=\sum\limits_{k=1}^{n}u_k =\sum\limits_{k=1}^{n}\frac{2}{(2k+1)(2k+3)} =\sum\limits_{k=1}^{n}\left(\frac{1}{2k+1}-\frac{1}{2k+3}\right)=\\ =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\frac{1}{3}+\sum\limits_{k=2}^{n}\frac{1}{2k+1}-\left(\sum\limits_{k=2}^{n}\frac{1}{2k+1}+\frac{1}{2n+3}\right)=\frac{1}{3}-\frac{1}{2n+3}. $$

Напомню, что мы приводили дробь $\frac{1}{2k+3}$ к виду $\frac{1}{2k+1}$. Разумеется, можно поступить и наоборот, т.е. представить дробь $\frac{1}{2k+1}$ в виде $\frac{1}{2k+3}$. Конечное выражение для частичной суммы не изменится. Процесс нахождения частичной суммы в этом случае я скрою под примечание.

Как найти $S_n$, если приводить к виду иной дроби? показать\скрыть

$$ S_n =\sum\limits_{k=1}^{n}\frac{1}{2k+1}-\sum\limits_{k=1}^{n}\frac{1}{2k+3} =\sum\limits_{k=0}^{n-1}\frac{1}{2k+3}-\sum\limits_{k=1}^{n}\frac{1}{2k+3}=\\ =\frac{1}{3}+\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}-\left(\sum\limits_{k=1}^{n-1}\frac{1}{2k+3}+\frac{1}{2n+3}\right) =\frac{1}{3}-\frac{1}{2n+3}. $$

Итак, $S_n=\frac{1}{3}-\frac{1}{2n+3}$. Находим предел $\lim_{n\to\infty}S_n$:

$$ \lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(\frac{1}{3}-\frac{1}{2n+3}\right)=\frac{1}{3}-0=\frac{1}{3}. $$

Заданный ряд сходится и сумма его $S=\frac{1}{3}$.

Ответ : $S=\frac{1}{3}$.

Продолжение темы нахождения суммы ряда будет рассмотрено во второй и третьей частях.

Вычислить сумму ряда можно только в случае, когда ряд сходится. Если ряд расходится то сумма ряда бесконечна и нет смысла что-то вычислять. Ниже приведены примеры из практики нахождения суммы ряда, которые задавали в Львовском национальном университете имени Ивана Франка. Задания на ряды подобраны так, что условие сходимости выполняется всегда, однако проверку на сходимость мы выполнять будем. Эта и следующие за ней статьи составляют решение контрольной работы по анализе рядов.

Пример 1.4 Вычислить сумму рядов:
а)
Вычисления: Поскольку граница общего члена ряда при номере следующему до бесконечности равна 0

то данный ряд сходится. Вычислим сумму ряда. Для этого преобразуем общий член, разложив его на простейшие дроби I и II типа. Методика разложения на простые дроби здесь приводиться не будет (хорошо расписана при интегрировании дробей), а лишь запишем конечный вид разложения

В соответствии с этим можем сумму расписать через сумму ряда образованного из простейших дробей, а дальше из разницы сумм рядов

Далее расписываем каждый ряд в явную сумму и выделяем слагаемые (подчеркивание), которые превратятся 0 после сложения. Таким образом сумма ряда упростится к сумме 3 слагаемых (обозначены черным), что в результате даст 33/40.

На этом базируется вся практическая часть нахождения суммы для простых рядов.
Примеры на сложные ряды сводятся к сумме бесконечно убывающих прогрессий и рядов, которые находят через соответствующие формулы, но здесь такие примеры рассматривать не будем.
б)
Вычисления: Находим границу n-го члена суммы

Она равна нулю, следовательно заданный ряд сходится и имеет смысл искать его сумму. Если граница отличная от нуля, то сумма ряда равна бесконечности со знаком "плюс" или "минус".
Найдем сумму ряда. Для этого общий член ряда который является дробью превратим методом неопределенных коэффициентов к сумме простых дробей I типа

Далее по инструкции которая приводилась ранее записываем сумму ряда через соответствующие суммы простейших дробей

Расписываем суммы и выделяем слагаемые, которые станут равными 0 при суммировании.

В результате получим сумму нескольких слагаемых (выделенные черным) которая равна 17/6 .

Пример 1.9 Найти сумму ряда:
а)
Вычисления: Вычислениям границы

убеждаемся что данный ряд сходится и можно находить сумму. Далее знаменатель функции от номера n раскладываем на простые множители, а весь дробь превращаем к сумме простых дробей I типа

Далее сумму ряда в соответствии с расписанием записываем через два простые

Ряды записываем в явном виде и выделяем слагаемые, которые после добавления дадут в сумме ноль. Остальные слагаемые (выделенные черным) и представляет собой конечную сумму ряда

Таким образом, чтобы найти сумму ряда надо на практике свести под общий знаменатель 3 простых дроби.
б)
Вычисления: Граница члена ряда при больших значениях номера стремится к нулю

Из этого следует что ряд сходится, а его сумма конечна. Найдем сумму ряда, для этого сначала методом неопределенных коэффициентов разложим общий член ряда на три простейшего типа

Соответственно и сумму ряда можно превратить в сумму трех простых рядов

Далее ищем слагаемые во всех трех суммах, которые после суммирования превратятся в ноль. В рядах, содержащих три простых дроби один из них при суммировании становится равным нулю (выделен красным). Это служит своеобразной подсказкой в вычислениях

Сумма ряда равна сумме 3 слагаемых и равна единице.

Пример 1.15 Вычислить сумму ряда:
а)

Вычисления: При общем член ряда стремящемся к нулю

данный ряд сходится. Преобразуем общий член таким образом, чтобы иметь сумму простейших дробей

Далее заданный ряд, согласно формулам расписания, записываем через сумму двух рядов

После записи в явном виде большинство членов ряда в результате суммирования станут равны нулю. Останется вычислить сумму трех слагаемых.

Сумма числового ряда равна -1/30 .
б)
Вычисления: Поскольку граница общего члена ряда равна нулю,

то ряд сходится. Для нахождения суммы ряда разложим общий член на дроби простейшего типа.

При разложении использовали метод неопределенных коэффициентов. Записываем сумму ряда из найденного расписание

Следующим шагом выделяем слагаемые, не вносящие никакого вклада в конечную сумму и остальные оставшиеся

Сумма ряда равна 4,5 .

Пример 1.25 Вычислить сумму рядов:
а)


Поскольку она равна нулю то ряд сходится. Можем найти сумму ряда. Для этого по схеме предыдущих примеров раскладываем общий член ряда через простейшие дроби

Это позволяет записать ряд через сумму простых рядов и, выделив в нем слагаемые, упростив при этом суммирование.

В этом случае останется одно слагаемое которое равен единице.
б)
Вычисления: Находим границу общего члена ряда

и убеждаемся что ряд сходится. Далее общий член числового ряда методом неопределенных коэффициентов раскладываем на дроби простейшего типа.

Через такие же дроби расписываем сумму ряда

Записываем ряды в явном виде и упрощаем к сумме 3 слагаемых

Сумма ряда равна 1/4.
На этом ознакомление со схемами суммирования рядов завершено. Здесь еще не рассмотрены ряды, которые сводятся к сумме бесконечно убывающей геометрической прогрессии, содержащие факториалы, степенные зависимости и подобные. Однако и приведенный материал будет полезен для студентов на контрольных и тестах.

Числовой ряд является некой последовательностью, которая рассматривается совместно с другой последовательностью (ее еще называют последовательностью частичных сумм). Подобные понятия применяются в математическом и комплексном анализе.

Сумму числового ряда можно легко вычислить в Excel с помощью функции РЯД.СУММ. Рассмотрим на примере, как работает данная функция, а после построим график функций. Научимся применять числовой ряд на практике при подсчете роста капитала. Но для начала немного теории.

Сумма числового ряда

Числовой ряд можно рассматривать как систему приближений к числам. Для его обозначения применяют формулу:

Здесь показана начальная последовательность чисел ряда и правило суммирования:

  • ∑ - математический знак суммы;
  • a i - общий аргумент;
  • i - переменная, правило для изменения каждого последующего аргумента;
  • ∞ - знак бесконечности, «предел», до которого проводится суммирование.

Запись обозначает: суммируются натуральные числа от 1 до «плюс бесконечности». Так как i = 1, то подсчет суммы начинается с единицы. Если бы здесь стояло другое число (например, 2, 3), то суммировать мы начинали бы с него (с 2, 3).

В соответствии с переменной i ряд можно записать развернуто:

А 1 + а 2 + а 3 + а 4 + а 5 + … (до «плюс бесконечности).

Определение суммы числового ряда дается через «частичные суммы». В математике они обозначаются Sn. Распишем наш числовой ряд в виде частичных сумм:

S 2 = а 1 + а 2

S 3 = а 1 + а 2 + а 3

S 4 = а 1 + а 2 + а 3 + а 4

Сумма числового ряда – это предел частичных сумм S n . Если предел конечен, говорят о «сходящемся» ряде. Бесконечен – о «расходящемся».

Сначала найдем сумму числового ряда:

Теперь построим в Excel таблицу значений членов ряда:

Общий первый аргумент берем из формулы: i=3.

Все следующие значения i находим по формуле: =B4+$B$1. Ставим курсор в нижний правый угол ячейки В5 и размножаем формулу.


Найдем значения. Делаем активной ячейку С4 и вводим формулу: =СУММ(2*B4+1). Копируем ячейку С4 на заданный диапазон.



Значение суммы аргументов получаем с помощью функции: =СУММ(C4:C11). Комбинация горячих клавиш ALT+«+» (плюс на клавиатуре).



Функция РЯД.СУММ в Excel

Для нахождения суммы числового ряда в Excel применяется математическая функция РЯД.СУММ. Программой используется следующая формула:

Аргументы функции:

  • х – значение переменной;
  • n – степень для первого аргумента;
  • m – шаг, на который увеличивается степень для каждого последующего члена;
  • а – коэффициенты при соответствующих степенях х.

Важные условия для работоспособности функции:

  • все аргументы обязательные (то есть все должны быть заполнены);
  • все аргументы – ЧИСЛОвые значения;
  • вектор коэффициентов имеет фиксированную длину (предел в «бесконечность» не подойдет);
  • количество «коэффициентов» = числу аргументов.

Вычисление суммы ряда в Excel

Та же функция РЯД.СУММ работает со степенными рядами (одним из вариантов функциональных рядов). В отличие от числовых, их аргументы являются функциями.

Функциональные ряды часто используются в финансово-экономической сфере. Можно сказать, это их прикладная область.

Например, положили в банк определенную сумму денег (а) на определенный период (n). Имеем ежегодную выплату х процентов. Для расчета наращенной суммы на конец первого периода используется формула:

S 1 = a (1 + x).

На конец второго и последующих периодов – вид выражений следующий:

S 2 = a (1 + x) 2 ; S 3 = a (1 + x) 2 и т.д.

Чтобы найти общую сумму:

S n = a (1 + x) + a (1 + x) 2 + a (1 + x) 3 + … + a (1 + x) n

Частичные суммы в Excel можно найти с помощью функции БС().

Исходные параметры для учебной задачи:

Используя стандартную математическую функцию, найдем накопленную сумму в конце срока сумму. Для этого в ячейке D2 используем формулу: =B2*СТЕПЕНЬ(1+B3;4)

Теперь в ячейке D3 решим эту же задачу с помощью встроенной функции Excel: =БС(B3;B1;;-B2)


Результаты одинаковые, как и должно быть.

Как заполнить аргументы функции БС():


  1. «Ставка» - процентная ставка, под которую оформлен вклад. Так как в ячейке В3 установлен процентный формат, мы в поле аргумента просто указали ссылку на эту ячейку. Если было бы указано число, то прописывали бы его сотую долю (20/100).
  2. «Кпер» - число периодов для выплат процентов. В нашем примере – 4 года.
  3. «Плт» - периодические выплаты. В нашем случае их нет. Поэтому поле аргумента не заполняем.
  4. «Пс» - «приведенная стоимость», сумма вклада. Так как мы на время расстаемся с этими деньгами, параметр указываем со знаком «-».

Таким образом, функция БС помогла найти нам сумму функционального ряда.

В Excel есть и другие встроенные функции для нахождения разных параметров. Обычно это функции для работы с инвестиционными проектами, ценными бумагами и амортизационными платежами.

Построение графика функций суммы числового ряда

Построим график функций, отражающий рост капитала. Для этого нам нужно построить график функции являющейся суммой построенного ряда. За пример, возьмем те же данные по вкладу:


В первой строке показана накопленная сумма через год. Во второй – через два. И так далее.

Сделаем еще один столбец, в котором отразим прибыль:


Как мы считали – в строке формул.

На основании полученных данных построим график функций.

Выделим 2 диапазона: A5:A9 и C5:C9. Переходим на вкладку «Вставка» - инструмент «Диаграммы». Выбираем первый график:



Сделаем задачу еще более "прикладной". В примере мы использовали сложные проценты. Они начисляются на наращенную в предыдущем периоде сумму.

Возьмем для сравнения простые проценты. Формула простых процентов в Excel: =$B$2*(1+A6*B6)


Добавим полученные значения в график «Рост капитала».


Какие именно выводы сделает инвестор – очевидно.

Математическая формула частичной суммы функционального ряда (с простыми процентами): S n = a (1 + x*n), где а – первоначальная сумма вклада, х – проценты, n – период.

Последовательность - высокоупорядоченный числовой набор, образованный по заданному закону. Термин «ряд» обозначает результат сложения членов соответствующей ему последовательности. Для различных числовых последовательностей мы можем найти сумму всех ее членов или общее число элементов до заданного предела.

Последовательность

Под этим термином понимается заданный набор элементов числового пространства. Каждый математический объект задается определенной формулой для определения общего элемента последовательности, а для большинства конечных числовых наборов существуют простые формулы определения их суммы. Наша программа представляет собой сборник из 8 онлайн-калькуляторов, созданных для вычисления сумм наиболее популярных числовых наборов. Начнем с самого простого - натурального ряда, которым мы пользуемся в повседневной жизни для пересчета предметов.

Натуральная последовательность

Когда школьники изучают числа, они первым делом учатся считать предметы, например, яблоки. Натуральные числа естественным образом возникают при счете предметов, и каждый ребенок знает, что 2 яблока - это всегда 2 яблока, не больше и не меньше. Натуральный ряд задается простым законом, который выглядит как n. Формула гласит, что n-ный член числового набора равен n: первый - 1, второй - 2, четыреста пятьдесят первый - 451 и так далее. Результат суммирования n первых натуральных чисел, то есть начинающихся от 1, определяется по простой формуле:

∑ = 0,5 n × (n+1).

Расчет суммы натурального ряда

Для вычислений вам потребуется выбрать в меню калькулятора формулу натурального ряда n и ввести количество членов последовательности. Давайте вычислим сумму натурального ряда от 1 до 15. Указав n = 15, вы получите результат в виде самой последовательности:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

и суммы натурального ряда, равной 120.

Легко проверить корректность вычислений при помощи выше приведенной формулы. Для нашего примера результат сложения будет равен 0,5 × 15 × 16 = 0,5 × 240 = 120. Все верно.

Последовательность квадратов

Квадратичная последовательность образуется из натуральной, путем возведения каждого члена в квадрат. Ряд квадратов формируется по закону n 2 , следовательно, n-ный член последовательности будет равняться n 2: первый - 1, второй - 2 2 = 4, третий - 3 2 = 9 и так далее. Результат суммирования начальных n элементов квадратичной последовательности вычисляется по закону:

∑ = (n × (n+1) × (2n+1)) / 6.

При помощи этой формулы вы легко можете высчитать сумму квадратов от 1 до n для сколько угодно большого n. Очевидно, что эта последовательность также бесконечна и с ростом n будет расти и общее значение числового набора.

Расчет суммы квадратного ряда

В этом случае вам потребуется выбрать в меню программы закон квадратной последовательности n 2 , после чего выбрать значение n. Давайте рассчитаем сумму первых десяти членов последовательности (n= 10). Программа выдаст саму последовательность:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100

а также сумму, равную 385.

Кубический ряд

Ряд кубов представляет собой последовательность натуральных чисел, возведенных в куб. Закон образования общего элемента последовательности записывается как n 3 . Таким образом, первый член ряда равен 1 3 = 1, второй - 2 3 = 8, третий - 3 3 = 27 и так далее. Сумма первых n элементов кубического ряда определяется по формуле:

∑ = (0,5 n × (n+1)) 2

Как и в предыдущих случаях, элементы числового пространства стремятся в бесконечность, и чем больше количество слагаемых, тем больше результат суммирования.

Расчет суммы кубического ряда

Для начала выберите в меню калькулятора закон кубического ряда n 3 и задайте любое значение n. Давайте определим сумму ряда из 13 членов. Калькулятор выдаст нам результат в виде последовательности:

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197

и суммы соответствующего ей ряда, равного 8281.

Последовательность нечетных чисел

Множество натуральных чисел содержит подмножество нечетных элементов, то есть тех, которые не делятся на 2 без остатка. Последовательность нечетных чисел определяется выражением 2n - 1. Согласно закону, первый член последовательности будет равен 2×1 − 1 = 1, второй - 2×2 − 1 = 3, третий - 2×3 − 1 = 5 и так далее. Сумма начальных n элементов нечетного ряда вычисляется по простой формуле:

Рассмотрим пример.

Вычисление суммы нечетных чисел

Сначала выберете в меню программы закон образования нечетного ряда 2n−1, после чего введите n. Давайте узнаем первые 12 членов нечетной ряда и его сумму. Калькулятор мгновенно выдаст результат в виде набора чисел:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,

а также суммы нечетного ряда, который равен 144. И действительно, 12 2 = 144. Все верно.

Прямоугольные числа

Прямоугольные числа относятся к классу фигурных чисел, которые представляют собой класс числовых элементов, необходимых для построения геометрических фигур и тел. К примеру, чтобы построить треугольник необходимо 3, 6 или 10 точек, квадрат - 4, 9 или 16 точек, а для выкладывания тетраэдра потребуется 4, 10 или 20 шаров или кубов. Прямоугольники легко построить при помощи двух последовательных чисел, например, 1 и 2, 7 и 8, 56 и 57. Прямоугольные же числа выражаются в виде произведения двух последовательных натуральных чисел. Формула для общего члена ряда выглядит какn × (n+1). Первые десять элементов такого числового набора выглядят как:

2, 6, 12, 20, 30, 42, 56, 72, 90, 110…

С увеличением n растет и значение прямоугольных чисел, следовательно, сумма такого ряда также будет расти.

Обратная последовательность

Для прямоугольных чисел существует обратная последовательность, определяемая формулой 1 / (n × (n+1)). Числовой набор трансформируется в набор дробей и выглядит как:

1/2 , 1/6, 1/12, 1/20, 1/30, 1/42, 1/56, 1/72, 1/90, 1/110…

Сумма ряда дробей определяется по формуле:

∑ = 1 - 1/(n+1).

Очевидно, что при увеличении количества элементов ряда значение дроби 1/(n+1) стремится к нулю, а результат сложения приближается к единице. Рассмотрим примеры.

Сумма прямоугольного и обратного ему ряда

Давайте рассчитаем значение прямоугольной последовательности для n = 20. Для этого выберете в меню онлайн-калькулятора закон задания общего члена числового набора n × (n+1) и укажите n. Программа выдаст мгновенный результат в виде 3080. Для вычислений обратного ряда измените закон на 1 / (n × (n+1)). Сумма обратных числовых элементов будет равна 0,952.

Ряд произведений трех последовательных чисел

Прямоугольный числовой набор можно изменить, добавив к нему еще один последовательный множитель. Следовательно, формула для вычисления n-ного члена набора преобразится в n × (n+1) × (n+2). Согласно этой формуле элементы ряда образуются в виде произведения трех последовательных чисел, например, 1 × 2 × 3 или 10 × 11 × 12. Первые десять элементов такого ряда выглядят как:

6, 24, 60, 120, 210, 336, 504, 720, 990, 1320

Это быстрорастущий числовой набор, а сумма соответствующего ряда при росте n уходит в бесконечность.

Обратная последовательность

Как и в предыдущем случае, мы можем обратить формулу n-ного члена и получить выражение 1 / (n × (n+1) × (n+2)). Тогда набор целых значений преобразится в ряд дробей, в знаменателе которых будут стоять произведения трех последовательных чисел. Начало такого набора имеет следующий вид:

1/6, 1/24, 1/60, 1/120, 1/210, 1/336…

Сумма соответствующего ряда определяется по формуле:

∑ = 0,5 × (0,5 - 1 / (n+1) × (n+2)).

Очевидно, что при росте количества элементов дробь 1 / ((n+1) × (n+2)) стремится к нулю, а сумма ряда приближается к значению 0,5 × 0,5 = 0,25. Рассмотрим примеры.

Ряд произведений трех последовательных чисел и обратный ему

Для работы с этим набором требуется выбрать закон определения общего элемента n × (n+1) × (n+2) и задать n, к примеру, 100. Калькулятор выдаст вам саму последовательность, а также значение результата сложения сотни чисел, равный 26 527 650. Если выбрать обратный закон 1 / (n × (n+1) × (n+2)), сумма ряда из 100 членов будет равна 0,250.

Заключение

Сумма ряда

сайт позволяет найти сумму ряда онлайн числовой последовательности. Помимо нахождения суммы ряда онлайн числовой последовательности, сервер в режиме онлайн найдет частичную сумму ряда . Это полезно для аналитических выкладок, когда сумму ряда онлайн необходимо представить и найти как решение предела последовательности частичных сумм ряда . По сравнению с другими сайтами, сайт обладает неоспоримым преимуществом, так как позволяет найти сумму ряда онлайн не только числового, но и функционального ряда , что позволит определить область сходимости исходного ряда , применяя наиболее известные методы. Согласно теории рядов , необходимым условием сходимости числовой последовательности является равенство нулю предела от общего члена числового ряда при стремлении переменной к бесконечности. Однако, это условие не является достаточным для определения сходимости числового ряда онлайн .. Для определения сходимости рядов онлайн найдены разнообразные достаточные признаки сходимости или расходимости ряда . Наиболее известные и часто применяемые из них - это признаки Д"Аламбера, Коши, Раабе, сравнения числовых рядов , а также интегральный признак сходимости числового ряда . Особое место среди числовых рядов занимают такие, в которых знаки слагаемых строго чередуются, а абсолютные величины числовых рядов монотонно убывают. Оказывается, для таких числовых рядов необходимый признак сходимости ряда онлайн является одновременно и достаточным, то есть равенство нулю предела от общего члена числового ряда при стремлении переменной к бесконечности. Существует множество различных сайтов, на которых представлены серверы для вычисления суммы ряда онлайн , а также разложения функций вряд в режиме онлайн в некоторой точке из области определения этой функции. Если разложить функцию в ряд онлайн не представляет на этих серверах особого труда, то вычислить сумму функционального ряда онлайн , каждым членом которого, в отличие от числового ряда , является не число, а функция, представляется практически невозможным в силу отсутствия необходимых технических ресурсов. Для www.сайт такой проблемы не существует.