Финансовый анализ и инвестиционная оценка предприятия. Анализ временных рядов и прогнозирование в Excel на примере

В этой статье попытаемся дать общее представление о статистических методах прогнозирования временных рядов .

Прогноз – возможное состояние объекта в будущем, а также суждение об альтернативных путях достижения этого состояния в будущем.

Классификация прогнозов :
По масштабности выделяют следующие прогнозы:

  • Прогнозы микроуровня
  • Прогнозы макроуровня
  • Глобальные прогнозы

По времени прогнозы делят на:

  • Краткосрочные
  • Среднесрочные
  • Долгосрочные

Это довольно условное деление, так как деление производит эксперт, изучающий временные ряды.

Прогнозирование можно рассматривать на двух уровнях:

  • Прогнозирование как предсказание
  • Прогнозирование как предуказание

Предсказание – отвечает на вопрос «что нам ожидать в будущем?», описывает перспективы изменения объекта исследования в будущем. (Такие прогнозы называют поисковыми )
Предуказание – отвечает на вопрос «что нам нужно изменить в будущем, что бы получить заданное состояние объекта?», возможное решение проблем, возникающих при предсказании. (Такие прогнозы называют нормативными ).

Этапы прогнозирования включают в себя следующие уровни:

  • Сбор необходимой задачи для прогноза
  • Предобработка данных
  • Определение моделей прогнозирования
  • Оценка параметров выбранных моделей
  • Проверка на адекватность выбранной модели
  • Выбор лучшей модели для прогнозирования
  • Построение прогноза по выбранной модели
  • Анализ результатов

Изменение экономико-финансовых показателей чаще всего отражается временными и динамическими рядами.
Динамические ряды – совокупность последовательных наблюдений показателя х в зависимости от изменения показателя y.
Временные ряды – называют совокупность последовательных наблюдений, упорядоченных во временной последовательности.

Рисунок 1. Пример временного ряда

Временные ряды можно разделить на моментные и интервальные ряды . Моментные временные ряды – наблюдения характеризуют объект на определенный момент времени. Интервальные временные ряды – ряд наблюдений характеризует объект за определенный период времени.
Процесс прогнозирования финансово-экономических рядов состоит в определении и выделении закономерностей, которые объясняли динамику изменения процесса в прошлом, для того чтобы потом использовать ее для описания ее развития в будущем. Для успешного осуществления процесса прогнозирования необходимо, что бы анализируемый временной ряд был достаточной длины (свойство полноты информации ), во временном ряде не должно быть пропусков (свойство непрерывности ). Соответствие изучаемого временного ряда этим требованиям проверяется на этапе «Предварительная обработка данных».

Давайте рассмотрим компоненты временного ряда.

  • Трендовая - T
  • Сезонная - S
  • Циклическая -C
  • Нерегулярная - e

Тренд – направленное изменение значений наблюдаемого временного ряда. Наряду с трендовыми движениями, в экономических процессах часто присутствует сезонная составляющая, которая представляет период колебания показателей, не превышающих 1 год. Если период более 1 года, то говорят, что во временном ряду присутствует циклическая составляющая. Если из изучаемого ряда убрать трендовую составляющую и периодическую (циклическая и сезонная), то останется нерегулярная, случайная компонента.
Если временной ряд равен сумме своих компонент
Y=T+S+C+e,
то полученная модель ряда называется аддитивной , если в виде произведения
Y=T*S*C*e,
то это мультипликативная модель.
Смешанный тип модели временного ряда соответственно представлен формулой
Y=T*S*C+e, где Y-значение временного ряда.
Если все компоненты во временном ряду правильно выделены, то случайная недетерминированная, некоррелированная компонента е обладает следующими свойствами:

  • е – является случайными величинами
  • случайные величины распределены по нормальному закону распределения
  • имеет математическое ожидание равно 0

Предобработка временных рядов


Аномальные наблюдения могут возникнуть из-за ошибок в измерении и передачи информации (ошибки первого рода – подлежат устранению) или воздействия на изучаемый процесс редко появляющихся объективных факторов (ошибки второго рода – не подлежат устранению).
Устранение аномальных наблюдений производится в 2 этапа: поиск аномальных наблюдений по методу Ирвинга и замена их на среднее арифметическое соседних значений.




Одним из самых распространённых методов сглаживания временных рядов является метод скользящей средней. Суть использования метода заключается в замене значений временного ряда на более сглаженные значения, подверженные колебаниям в меньшей степени. Скользящие средние позволяют выявить тенденцию в развитии процесса и отфильтровать компоненты временного ряда, а также подготовить данные для построения модели прогнозирования.
Сглаживание может производиться следующими методами:

  • Простой скользящей средней (SMA)
  • Взвешенной скользящей средней (WMA)
  • Экспоненциальной скользящей средней (EMA)
  • Критерий восходящих/нисходящих серий Кокса-Стюарта
  • Критерий серий (основанный на медиане выборки)
  • Метод Фостера-Стюарта
  • Метод автокорреляционных функций

Расчет количественных характеристик развития экономических процессов включает в себя определение: расчета абсолютных приростов , расчета темпов роста , выявления автокорреляции временного ряда. В основе вычисления этих показателей лежит сравнение значений временного ряда. Такой подход к анализу и прогнозированию процесса применим, если изучаемый временной ряд имеет линейную тенденцию. К недостаткам такого анализа следует отнести то, что в нем учитывается только конечные и начальные значения временного ряда и исключается влияние промежуточных данных.

Построение моделей временных рядов
Формирование значений временного ряда определяется тремя закономерностями:

  • Инерцией тенденции
  • Инерцией взаимосвязи между последовательными значениями временного ряда
  • Инерцией взаимосвязи между исследуемым показателем и показателями – факторами, оказывающие на него воздействие

В соответствии с этими закономерностями выделяют задачи анализа и моделирования тенденций (решается с помощью моделей кривых роста ), анализа взаимосвязи между значениями временного ряда (решается с помощью адаптивных моделей ), анализа причинных взаимодействий между исследуемым показателем и показателями – факторами (решается регрессионными методами ).
Кривая роста – плавная кривая, аппроксимирующая временной ряд. Аналитические методы выделения неслучайной составляющей временного ряда с помощью кривых роста реализуется в рамкам модели регрессии.
Процедура разработки прогноза по кривым роста:

  • Выбор кривой роста
  • Оценка параметров выбранной кривой
  • Расчет точного и интервального прогноза
  • Оценка полученного прогноза

Кривые роста делятся на три класса. К первому классу относят кривые для описания монотонных процессов развития объекта. Ко второму классу относят кривые, которые описывают процессы с пределом роста в исследуемом периоде (их называют кривые насыщения ). Если кривые насыщения имеют точку перегиба, то они относятся к 3му классу S – образных кривых.


1 класс кривых роста включает – полином первого порядка, второго, третьего, экспоненту, экспоненциальные кривые.
2 класс кривых роста включает – модифицированную экспоненту.
3 класс кривых – Кривая Гомперца, логистическая кривая.

Наиболее простой способ выбрать кривую роста – визуальный метод. Подбирают кривую, наиболее точно описывающую исследуемый процесс.
Оценка качества полученной модели для прогнозирования по кривым роста производится при проверке адекватности и оценки точности модели .
В проверку адекватности входит: проверка независимости (отсутствие автокорреляции по критерию Дарбина-Уотсона), проверка случайности, соответствие остатков временного ряда случайному распределению(R/S критерий), равенство 0 средней ошибки.
Точность модели оценивается по методу МНК , т.е. кривая подбирается таким образом, чтобы график функции кривой роста располагался на минимальном удалении от точек процесса.

Анализ временных рядов (АВР) – простейший метод восстановления зависимости в детерминированном случае, исходя из заданного временного ряда. Основная задача – экстраполяция (прогноз) – самый постой способ прогноза рыночной ситуации. Суть его – распространение тенденций, сложившихся в прошлом и будущем.

Многие рыночные процессы обладают инертностью, что учитывают при прогнозах. На определенный период следует максимально принимать во внимание вероятность изменения условий функционирования рынка. Делается предположение, что система эволюционирует в достаточно стабильных условиях. Чем система крупнее, тем вероятнее сохранение параметров без изменения, но не на большой срок. Рекомендуется, чтобы период прогноза не превышал 1/3 длительности исходной временной базы.

Временной ряд – серия числовых величин, полученных через регулярные промежутки времени Основное положение, на котором базируется использование временных рядов на предприятии – факторы, влияющие на отклик изучаемой системы, действующие в прошлом, настоящем и подобным образом будут действовать в недалеком будущем.

Цель анализа – оценка и выделение факторов с целью прогноза дальнейшего поведения системы и выработки рациональных УР. Прогноз на основе АВР – краткосрочный, в отношении периода, которого принимается, характеристики изучаемого явления существенно не изменяются. Большинство прогнозных ошибок связано с тем, что прогноз предполагает сохранение прошлых тенденций в будущем. Эта гипотеза редко оправдывается в экономической и общественной жизни.

ВР могут стать плохой основой для разработки прогноза, поэтому методы прогнозирования и АВР применяют для краткосрочного прогнозирования достаточно стабильных и хорошо изученных процессов. Прогнозируемый период не превышает 25-30% исходной временной базы. При использовании уравнения регрессии прогнозные расчеты проводят для оптимистических и пессимистических оценок исходных параметров. Отсюда получают 2 вида прогнозов: оптимистический и пессимистический. Прогнозную оценку, получаемую на основе методов прогнозирования, используют как индикатор желаемой величины прогнозного параметра.

ВР включает в себя:

1) тренд – показывает общий тип изменений, долгосрочного уменьшения и увеличения ряда,

2) сезонные колебания – колебания вокруг тренда, которые возникают на регулярной основе.

Обычно регулярные колебания возникают в период до года. Могут отслеживаться при ежеквартальных, ежемесячных, еженедельных и т.д. наблюдениях.

3) циклические колебания – возникают в периоды свыше года. Часто присутствуют в финансовых данных и связаны с резким спадом, бурным ростом и периодом застоя.


4) случайные колебания – непредсказуемые колебания в большинстве реальных ВР.

Требования к данным временного ряда

Все методы прогнозирования используют математическую статистику, поэтому необходимо, чтобы все данные были сопоставимы, достаточно представлены для проявления закономерности однородные и устойчивые. Невыполнение одного из этих требований делает бессмысленным применение математической статистики.

1. Сопоставимость достигается в результате одинакового подхода, к наблюдениям на разных этапах формирования временного ряда. Данные во временных рядах должны выражаться в одних и тех же единицах измерениях, иметь одинаковый шаг наблюдений, рассчитываться для одного и того же интервала времени по одной и той же методике, охватывать одни и те же элементы, принадлежащие одной территории и относящиеся к неизменной совокупности.

Несопоставимость данных чаще всего проявляется в стоимостных показателях. Даже в тех случаях когда значения этих показателей фиксируются в неизменных ценах. Такого рода несопоставимость временных рядов невозможно устранить чисто формальными методами.

2. Представительность данных характеризуется, прежде всего, полнотой представленных данных. Достаточное число наблюдений определяется в зависимости от цели проводимого исследования. Если целью является описательный статистический анализ, то в качестве изучаемого интервала времени можно выбрать любой интервал по своему усмотрению. Если же цель исследования - построение модели прогнозирования, то число данных исходного временного ряда должно не менее чем в 3 раза превышать период прогноза и не должно быть менее 7 данных. В случае использования квартальных или месячных данных для исследования сезонности и прогнозирования сезонных процессов, исходный временной ряд должен содержать квартальные либо месячные данные не менее чем за 4 года, даже если прогноз требуется на 1 или 2 месяца.

3.Однородность – отсутствие нетипичных аномальных наблюдений, а так же изломов тенденций (изменение). Аномальность приводит к смещению оценок и как следствие к искажению результатов анализа. Формально аномальность проявляется как сильный скачок или спад с последующим приблизительным восстановлением предыдущего уровня. Для диагностики аномальных наблюдений разработаны различные стандартные критерии.

4. Устойчивость – это свойство отражает преобладание закономерности над случайностью в изменениях уровня и ряда. На графиках устойчивых временных рядов даже визуально прослеживается закономерность. А на графиках неустойчивых временных рядов – изменения представлены хаотично. Поэтому поиск закономерностей в таких временных рядах не имеет смысла.

Модели временных рядов

Статистические методы исследования исходят из предположения возможности представления значений временного ряда в виде комбинации нескольких компонентов, отражающих закономерность и случайность развития. В частности для краткосрочных прогнозов применяется аддитивная (адаптивная) и мультипликативная модели.

1. Адаптивная (аддитивная)

Y(t) = T(t) +S(t) + F(t)

t - номер временного интервала

T(t) – тренд развития (долговременная тенденция)

S(t) – сезонная компонента

Е(t) – остаточная компонента

2. Мультипликативная

Y(t) = T(t)*S(t)*F(t)

При односильном постоянстве амплитуды сезонной волны целесообразно использовать аддитивную модель. При изменении амплитуды сезонной волны соответствие с тенденцией среднего уровня используется мультипликативная модель. Иногда используются модели смешанного типа, они дают более точный результат, но содержательно плохо интерпретируются. Применение мультипликативной модели обусловлено тем что в некоторых временных рядах значение сезонной компоненты представляет собой определенную долю трендового значения. Практика показывает что случаи, когда сезонные колебания исследуемого процесса велики и не очень стабильны, мультипликативная модель дает плохие результаты. Сезонная компонента характеризует устойчивые и внутригодичные колебания уровней – она проявляется в некоторых показателях представленных квартальными или месячными данными.

В моделях с аддитивной и мультипликативной компонентой общая процедура анализа примерно одинаковая.

Надо сделать:

1) расчет значений сезонной компоненты

2) вычитание сезонной компоненты из фактических значений – этот процесс называется десезонализации (устранение сезонности)

3) расчет ошибок как разности между фактическими и трендовыми значениями

4) расчет среднего отклонения или средней квадратической ошибки

В прогнозировании также применяются модели кривых роста.

Кривые роста – математические функции предназначенные для аналитического выравнивания временного ряда.

Для описания кривых роста используются следующие функции

2. Парабола Y(t) = a+bt =ct 2

3. Гипербола Y(t) = a +b/t

4. Степенная

5. Показательная

6. Логарифмическая

7. Кривая Джонсона

8. Модифицированная экспонента

Сглаживание временных рядов

Выявление основной тенденции развития называется выравниванием или сглаживание временного ряда. Методы выявления основной тенденции – это методы выравнивания.

Один из наиболее простых приемов обнаружения общей тенденции развития явления – это укрупнение интервала динамического ряда. Для выявления тенденций развития используется метод скользящего среднего или метод экспоненциального сглаживания. Оба метода субъективны в отношении выбора параметров сглаживания. И именно в корректном выборе параметров проявляется интуиция исследователя.

Метод скользящего среднего – крайне субъективен и на результаты сглаживания сильно влияет длина периода сглаживаний. При небольших периодах не удается выявить трендовую компоненту. При больших периодах происходят значительные потери данных на концах анализируемого интервала.

Скользящая средняя порядка L – это временной ряд состоящий из среднеарифметических и среднеарифметических L в соседних значениях функции Y по всем возможным значениям времени. В качестве L – нечетное число, 3, 5,7 - трехточечные, пятиточечные и семиточечные.

Трехточечная схема : среднее значение будет рассчитываться по 3м значениям Yi, одно из которых относится к прошлому периоду, второе к искомому и 3 к будущему периоду. При i = 1 не существует прошлого значение, то в первой точке невозможно рассчитать сглаженное значение. При i = 2 то среднее значение будет средним арифметическим.

В последней точке исходного интервала скользящее среднее также невозможно рассчитать из-за отсутствия будущего значения по отношению к рассчитываемому.

Метод экспоненциального сглаживания – в отличие от скользящего среднего может быть использован для краткосрочным прогнозов в будущей тенденции на один период вперед. Именно поэтому метод обладает явным преимуществом перед предыдущим.

Алгоритм расчета сглаженных значений в любой точке ряда основан на 3х величинах: наблюдаемом значении Yi в данной точке, рассчитанном сглаженном значении для предшествующей точки ряда и некоторым заранее заданным коэффициентам сглаживания, постоянным по всему ряду.

Fi = α*Yi +(α-1)*Fi

Yi –фактическое значение итой точки ряда.

Сглаженное значение для предшествующей точки ряда - (альфа-1)

Альфа может принимать любые значения от 0 до1, но обычно на практике ограничиваются интервалом от 0,2 до 0.5

Метод Хольта. L t =k*Y t +(1-k)*(L t-1 -T t-1), где

L t – сглаженная величина на текущий период;

K – коэффициент сглаживания ряда;

Y t – текущие значение ряда (например, объём продаж);

L t-1 – сглаженная величина за предыдущий период;

T t-1 – значение тренда за предыдущий период.

Данные за прошлые периоды можно использовать для прогнозирования.

Множество данных, где время является независимой переменной, называется временным рядом .

Общее изменение со временем результативного признака называется трендом . Мы рассмотрим модели линейного тренда , то есть параметры тренда модно рассчитать с помощью модели линейной регрессии.

Сезонная вариация – это повторение данных через небольшой промежуток времени. Под «сезоном» можно понимать день, и неделю, и месяц, и квартал. Если же промежуток времени будет длительным, то это – циклическая вариация . Мы остановимся на изучении данных для небольших интервалов времени, поэтому циклическую вариацию исключим из рассмотрения.

Сначала на основании прошлых данных определяется сезонная вариация. Исключив сезонную вариацию (проведя так называемую десезонализацию данных ), с помощью модели линейной регрессии находим уравнение тренда. По уравнению тренда и прошлым данным вычисляем величины ошибок. Это среднее абсолютное отклонение
, где - это разность фактического и прогнозного значений в момент времениt , n – число наблюдений.

Анализ аддитивной модели.

Для аддитивной модели фактическое значение фактическое значение A = трендовое значение T + сезонная вариация S + ошибка E .

Пример 50 . Предположим, что нам известен объем прожаж (тыс. руб.) за последние 11 кварталов. Дадим на основании этих данных прогноз объема продаж на следующие два квартала.

Номер квартала

Объем продаж

Оценка сезонной вариации

Заполним следующую таблицу. Оценки сезонной вариации запишем под соответствующим номером квартала году. В каждом столбце вычисляем среднее значение оценок сезонной вариации = (сумма чисел в столбце)/ (количество чисел в столбце). Результат запишем в строке «Среднее» (округления взяты до одной цифры после запятой). Сумма чисел в строке «Среднее» = -1.

Скорректируем значения в строке «Среднее», чтобы общая сумма была равна 0. Это необходимо, чтобы усреднить значения сезонной вариации в целом за год. Корректирующий фактор вычисляется следующим образом: сумма оценок сезонных вариаций (-1) делится на число кварталов в году (4). Поэтому из каждого числа этой строки нужно вычесть -1/4= -0,25. Так как у нас округления до одной цифры после запятой, то из нечетных столбцов вычтем -0,3, а из четных столбцов вычтем -0,2. В последней строке получены значения сезонной вариации для соответствующего квартала года.

Номер квартала в году

Номер квартала

Объем продаж

Сезонная вариация

A - S = T + E

Уравнение линии тренда T = a + b * x , где - номерi - го квартала.

Найдем коэффициенты a и b

где - номерi - го квартала, а - значение сезонной вариацииi - го квартала.

Номер квартала

x 2

a =1,9 и b =1,1.

T = 1,9+ 1,1 x .

i

, где - объем продаж,- сезонная вариация,- трендовое значение вi -ом квартале.

i x

Составим таблицу

Объем продаж A

Десезонализированный объем продаж A - S = T + E

Трендовое значение

Ошибка

И среднеквадратическая ошибка

Прогноз объема продаж в 12-м квартале: (1,9+1,1*12)+(-0,9)=14,2 тыс.руб.

Прогноз объема продаж в 13-м квартале: (1,9+1,1*13)+2=18,2 тыс.руб.

Задача 50. В таблице указан объем продаж (тыс. руб.) за последние 11 кварталов. Дать на основании этих данных прогноз объема продаж на следующие два квартала.

На первом шаге нужно исключить влияние сезонной вариации. Воспользуемся методом скользящей средней. Заполним таблицу.

Номер квартала

Объем продаж

Скользящая средняя за 4 квартала

Центрированная скользящая средняя

Оценка сезонной вариации

1 год = 4 квартала. Поэтому найдем среднее значение объема продаж за 4 последовательных квартала. Для этого нужно сложить 4 последовательных числа из 2-го столбца (объем продаж), эту сумму умножить на 4 (количество слагаемых) и результат записать в 3-й столбец напротив 3-го слагаемого.

Если при заполнении 3-го скользящая средняя вычислялась для четного числа сезонов, то вычисляется центрированная скользящая средняя по следующему правилу: полусумму двух соседних чисел из 3-го столбца запишем в четвертый столбец напротив верхнего из них. В противном случае (если скользящая средняя вычислялась для нечетного числа сезонов) центрированную скользящую среднюю вычислять не надо.

5-й столбец (оценка сезонной вариации) – это разность объема продаж и скользящей средней, в случае если последняя вычислялась для нечетно числа сезонов или разность объема продаж и центрированной скользящей средней в противном случае.

Заполним следующую таблицу. Оценки сезонной вариации запишем под соответствующим номером квартала году. В каждом столбце вычисляем среднее значение оценок сезонной вариации = (сумма чисел в столбце)/ (количество чисел в столбце). Результат запишем в строке «Среднее» (округления взяты до одной цифры после запятой). Сумма чисел в строке «Среднее» .

Скорректируем значения в строке «Среднее», чтобы общая сумма была равна 0. Это необходимо, чтобы усреднить значения сезонной вариации в целом за год. Корректирующий фактор вычисляется следующим образом: сумма оценок сезонных вариаций. Поэтому из каждого числа этой строки нужно вычесть = 0,593. В последней строке получены значения сезонной вариации для соответствующего квартала года.

Номер квартала в году

Скорректированная сезонная вариация

Исключим сезонную вариацию из фактических данных. Проведем десезонализацию данных.

Номер квартала

Объем продаж

Сезонная вариация

Десезонализированный объем продаж

A - S = T + E

Из чисел 2-го столбца вычитаем числа 3-го столбца и результат пишем в 4-м столбце.

Уравнение линии тренда T = a + b * x , где - номерi - го квартала.

Найдем коэффициенты a и b по данным следующим формулам:

где - номерi - го квартала, а - значение сезонной вариацииi - го квартала.

Для упрощения расчетов по указанным формулам заполним таблицу

Номер квартала

x 2

Подставляя соответствующие данные из таблицы в приведенные выше формулы получим: a =1,97 и b =1,12.

Итак, уравнение тренда запишется так T = 1,97+ 1,12 x .

Теперь займемся расчетом ошибок.

Для этого необходимо найти величины - разность фактического и прогнозного значения вi -ом квартале по следующей формуле:

, где - объем продаж,- сезонная вариация,- трендовое значение вi -ом квартале.

Чтобы вычислить трендовое значение в i -ом квартале воспользуемся соответствующей формулой приведенной выше подставляя в нее вместо x номер соответствующего квартала.

Составим таблицу

Объем продаж A

Десезонализированный объем продаж A - S = T + E

Трендовое значение

Ошибка

Среднее абсолютное отклонение и среднеквадратическая ошибка . Мы видим, что ошибки достаточно велики. Это скажется на качестве прогноза.

Дадим прогноз объема продаж на следующие два квартала.

прогноз = трендовое значение + скорректированная сезонная вариация.

Мы считаем, что тенденция, выявленная по прошлым данным, сохранится и в ближайшем будущем. Подставляем номера кварталов в формулу и учитываем скорректированную сезонную вариацию. T = 1,97+ 1,12 x .

Прогноз объема продаж в 12-м квартале: (1,97+1,12*12)+(-0,453)=14,957 тыс.руб.

Прогноз объема продаж в 13-м квартале: (1,97+1,12*13)+ 1,047=17,577 тыс.руб.

Самым распространенным способом моделирования тенденций вре­менного ряда является построение аналитической функции, характеризу­ющей зависимость уровней ряда от времени.

Длительную тенденцию изменения показателей временного ряда, на которую могут налагаться другие составляющие, называют «тренд».

Временной ряд содержит результаты наблюдения за процессом на неко­тором интервале времени, называемом участком наблюдения (рис. 3.8). Отрезок времени от последнего наблюдения до того момента, для которо­го нам необходимо получить прогноз, называется участком упреждения .

Рис. 3.8 Прогноз экстраполяцией тренда

Сплошная линия (участок наблюдения) изображает тренд. Математическая модель тренда построена на основе данных временного ряда (точки вдоль тренда). Пунктирная линия характеризует прогнозные значения экстраполированной линии тренда.

Некоторые социально-экономические процессы и объекты моделиру­ются на основе тренда с помощью определенных функций.

Временные ряды наблюдаемых показателей чаще всего аппроксимируются следующи­ми элементарными функциями: (уравнение прямой линии); (парабола 2-го порядка); (логарифмическая); (степенная); (показательная); (гиперболическая); у=1: (а + b х е t ) (логистическая); у = sin t и у= cos t (тригонометрическая). Возможно использование комбинированных функций.

Методы экстраполяции динамических рядов (трендовые методы) делятся на два основных блока методов: аналитические и адаптивные (рис. 3.9).

Рис. 3.9 Методы экстраполяции динамических рядов

При простой экстраполяции динамического ряда прогнозная оценка (точечный прогноз) на период упреждения рассчитывается как средняя арифметическая значений интервала оценивания.

Прогнозирование на основе экстраполяции тренда включает ряд последовательных этапов:

Анализ и обработка исходной информации, проверка ряда динамики на наличие тренда;

Выбор вида функции, описывающей временной ряд;

Определение параметров прогнозной функции;

Расчет точечных и интервальных прогнозов.

Выделение тренда может быть произведено тремя методами: скользя­щей средней, укрупнения интервалов или аналитического выравнивания.

Под аналитическим выравниванием, которое используется наиболее часто, подразумевается определение основной проявляющейся во времени тенденции развития изучаемого явления.

Параметры каждого из перечисленных выше трендов можно опреде­лить методом наименьших квадратов (МНК), используя в качестве независимой переменной время t= 1,2,…,n, а в качестве зависимой перемен­ной - фактические уровни временного ряда у t. Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Выбранная прогнозная эмпирическая функция, описывающая динами­ческий ряд, должна минимизировать стандартное отклонение S на интерва­ле оценивания, обеспечивать тесноту связи (по коэффициенту корреля­ции); аппроксимирующее уравнение должно быть адекватно фактической временной тенденции (по F-критерию) и устранять автокорреляцию.

Оценка адекватности может проводиться с помощью следующих пока­зателей.

средняя ошибка аппроксимации.

А < 12% свидетельствует об адекватности функции реаль­ным условиям.

коэффициент детерминации.

- остаточная сумма квадратов отклонений фактиче­ских значений от расчетных.

R 2 (квадрат коэффициента корреляции) - доля дисперсии, объясняемая регрессией, в общей дисперсии результатив­ного признака.

F-тест - оценивание качества уравнения - состоит в проверке гипо­тезы H 0 о статистической незначимости уравнения регрессии и показателя тесноты связи.

F-критерий Фишера.

Наличие автокорреляции остатков выявляется критерием даром Уотсона (DW):

Рассмотрим последовательность составления прогнозной модели на примере расчета среднесписочной численности занятых в промышлен­ности (табл. 3.8).

Таблица 3.8

Среднесписочная численность промышленно-производственного персонала

Численность

Численность

Динамический ряд численности занятых в промышленности имеет явно выраженную тенденцию к убыванию и описывается линейной функцией (рис.)3.10.

Рис. 3.10 Численность персонала и ее линейный тренд

Прогнозирование среднесписочной численности промышленно-произ­водственного персонала на 5 лет, до 2015 г. проведено на основе уравнения прямой линии, с помощью программы EXCEL, анализ данных. Получено уравнение связи , где Y – численность промышленно-производственного персонала, x – порядковый номер года. Уравнение адекватно, модель является достоверной, так как коэффициент детерминации =0,9388 больше 0,65.


Подставив в уравнение связи вместо х числа от 2011 до 2015, рассчитаем прогнозные значения численности персонала (табл. 3.9).

Таблица 3.9

Прогнозные оценки среднесписочной численности промышленно-производственного персонала региона на период 2011-2016 гг., тыс. чел.

К адаптивным методам относятся: методы скользящей средней, экс­поненциального сглаживания, гармонических весов, авторегрессий и метод Бокса - Дженкинса. Параметры адаптивных моделей чаще всего рассчи­тываются с использованием пакетов прикладных программ Statistica, SPSS или Forecast Expert.

Выделение тренда с помощью скользящих средних

Метод скользящих средних позволяет «сгладить» ряд значений с тем, чтобы выделить тренд. При использовании этого метода берется среднее (обычное среднеарифметическое) фиксированного числа значений. Затем это вычисление повторяется по всему ряду значений. Полученные скользящие средние обозначат общий тренд временного ряда. Число значений, которое используется при вычислении среднего, определяет результат сглаживания. В целом, чем больше точек берется, тем сильнее сглаживаются данные.

Сгладим с помощью скользящих средних колебания объемов продаж на временных промежутках. Например, в нижеприведенной таблице 3.10 представлены исходные данные об объемах продаж, а также скользящие средние, рассчитанные по каждым 3 (трем) значениям (так называемые трехточечные скользящие средние).

Таблица 3.10

Годовой объем продаж компании и трехточечные скользящие средние

Годовой объем продаж, млн. руб.

Трехточечные скользящие средние, млн. руб.

Эти скользящие средние рассчитаны следующим образом. Первые три значения объема продаж (за 1997-1999 гг.) складываются, а затем делятся на три, получаем значение первого скользящего среднего: (170 + 120 + 105)/3 = 395/3=131,67

Это значение записывается по центру значений, по которым рассчитывалось среднее значение, и поэтому в таблице значение скользящего среднего, полученное первым, стоит против 1998 г. Следующее значение скользящего среднего рассчитывается так:

Второе скользящее среднее =(120 +105 +156)/3=381/3= 127

На рис. 3.11 показано, как трехточечные скользящие средние существенно сгла­дили график. Были сняты многие колебания исходных данных, и полученный набор значений более четко показывает тренд данных. Таким образом, можно делать прогнозы исходя из оценок линии регрессии, составленной по значениям сколь­зящих средних. Однако трехточечные скользящие средние все еще выказывают некоторые колебания. Ряд можно сгладить еще больше, если увеличить число то­чек при вычислении значений. Например, пяти-, семиточечные скользящие средние.

Рис. 3.11 Объемы продаж компании и скользящие средние, млн. руб.

Всем привет, раз на хабре пошел цикл статей про нейронные сети, то и я напишу про возможность использования нейронных сетей в задаче прогнозирования финансовых временных рядов.
Существует несколько различных теорий о возможности прогнозирования фондовых рынков. Одна из них - гипотеза эффективного рынка, согласно ей, в цене акции уже учтена вся имеющиеся информация и делать прогнозы бессмысленно. Продолжением этой гипотезы можно назвать теорию случайных блужданий.
В теории случайных блужданий информация подразделяется на две категории - предсказуемую, известную и новую, неожиданную. Если предсказуемая, а тем более уже известная информация уже заложена в рыночные цены, то новая неожиданная информация в цене пока еще не присутствует. Одним из свойств непредсказуемой информации является ее случайность и, соответственно, случайность последующего изменения цены. Гипотеза эффективного рынка объясняет изменение цен поступлениями новой неожиданной информации, а теория случайных блужданий дополняет это мнением о случайности изменения цен.

Краткий практический вывод теории случайных блужданий - игрокам рекомендуется использовать в своей работе стратегию «покупай и держи». Следует заметить, что расцвет теории случайных блужданий пришелся на 70-е годы, когда на фондовом рынке США, традиционно являющемся главным полигоном проверки и использования всех новых экономических теорий, не было явных тенденций, а сам рынок находился в узком коридоре. Согласно гипотезе эффективного рынка и теории случайных блужданий прогнозирование цен невозможно.
Однако, большинство участников рынка все же использует различные методы для прогнозирования, предполагая, что сам ряд полон скрытых закономерностей.
Такие скрытые эмпирические закономерности пытался выявить в 30-х годах в серии своих статей основатель технического анализа Эллиот (R.Elliott).
В 80-х годах неожиданную поддержку эта точка зрения нашла в незадолго до этого появившейся теории динамического хаоса. Эта теория построена на противопоставлении хаотичности и стохастичности (случайности). Хаотические ряды только выглядят случайными, но, как детерминированный динамический процесс, вполне допускают краткосрочное прогнозирование. Область возможных предсказаний ограничена по времени горизонтом прогнозирования, но этого может оказаться достаточно для получения реального дохода от предсказаний (Chorafas, 1994). И тот, кто обладает лучшими математическими методами извлечения закономерностей из зашумленных хаотических рядов, может надеяться на большую норму прибыли - за счет своих менее оснащенных собратьев.
Методы прогнозирования
В настоящее время профессиональные участники рынка используют различные методы прогнозирования финансовых временных рядов, основные из них:
1) экспертные методы прогнозирования.
Самый распространенный метод из группы экспертных методов - метод Дельфи. Суть метода заключается в сборе мнений различных экспертов и их обобщение в единую оценку. Если мы прогнозируем этим методом финансовые рынки, то нам нужно выделить экспертную группу людей разбирающихся в этой предметной области (это могут быть аналитики, профессиональные трейдеры, инвесторы, банки итд), провести анкетирование или опрос и сделать обобщение о текущей ситуации на рынке.
2) Методы логического моделирования.
Основаны на поиске и выявлении закономерностей рынка в долгосрочной перспективе.
Сюда входят методы:
- метод сценариев («если - то»), описание последовательностей исходов из того или иного события, с созданием базы знаний;
- методы прогнозов по образу;
- метод аналогий.
3) Экономико-математические методы.
Методы из этой группы базируются на создании моделей исследуемого объекта. Экономико-математическая модель - это определенная схема, путь развития рынка ценных бумаг при заданных условиях. При прогнозировании финансовых временных рядов используют статистические, динамические, микро- макро-, линейные, нелинейные, глобальные, локальные, отраслевые, оптимизационные, дескриптивные. Очень значимы для финансовых наук оптимизационные модели, они представляют из себя систему уравнений, куда входят различные ограничения, а также особое уравнение называемое функционалом оптимальности (или критерием оптимальности). С помощью него находят оптимальное, наилучшее решение по какому-либо показателю.
4) Статистические методы.
Статистические методы прогнозирования применительно, для финансовых временных рядов основаны на построении различных индексов (диффузный, смешанный), расчет значений дисперсии, мат ожидания, вариации, ковариации, интерполяции, экстраполяции.
5) Технический анализ.
Прогнозирование изменений цен в будущем на основе анализа изменений цен в прошлом. В его основе лежит анализ временны́х рядов цен - «чартов» (от англ. chart). Помимо ценовых рядов, в техническом анализе используется информация об объёмах торгов и другие статистические данные. Наиболее часто методы технического анализа используются для анализа цен, изменяющихся свободно, например, на биржах. В техническом анализе множество инструментов и методов, но все они основаны на одном предположении: из анализа временны́х рядов, выделяя тренды, можно спрогнозировать поведение цен.
6) Фундаментальный анализ.
Метод прогнозирования рыночной (биржевой) стоимости компании, основанных на анализе финансовых и производственных показателей её деятельности.
Фундаментальный анализ используется инвесторами для оценки стоимости компании (или её акций), которая отражает состояние дел в компании, рентабельность её деятельности. При этом анализу подвергаются финансовые показатели компании: выручка, EBITDA (Earnings Before Interests Tax, Deprecation and Amortization), чистая прибыль, чистая стоимость компании, обязательства, денежный поток, величина выплачиваемых дивидендов и производственные показатели компании.
Использование нейронных сетей для прогнозирование финансовых временных рядов
Нейронные сети можно отнести к методам технического анализа, т.к они тоже пытаются выявить закономерности в развитие ряда, обучаясь на его исторических данных.
Финансовый временной ряд довольно сильно зашумлен и поэтому надо уделить особое внимание предобработке данных и кодированию переменных.

Рис. 1 - Интервальный график в виде японских свечей индекса РТС. Период - день.

Для справки: каждая фигура на графике показывает нам определенный промежуток времени (в данном случае один день) и движения цены за этот промежуток. Опишем их:
- цена открытия - это величина цены в начале этого промежутка времени
- цена закрытия - это величина цены в конце этого промежутка времени
- максимальная цена - это максимальная цена за весь этот промежуток времени
- минимальная цена - это минимальная цена за весь этот промежуток времени
- если цена шла вверх (бычий тренд) за этот период - тело свечи будет белым (или прозрачным)
- если цена шла вниз (медвежий тренд) за этот период - тело свечи будет черным (или закрашенным)


Рис. 2 - Японские свечи.

Действительно значимыми для предсказаний являются изменения котировок. Поэтому на вход нейронной сети после предварительной обработки будем подавать ряд процентных приращений котировок, рассчитанных по формуле X[t] / X, где X[t] и X цены закрытия периодов.


Рис. 3 - Ряд процентных приращений котировок, рассчитанных по формуле X[t] / X.

Но, т.к. изначально процентные приращения имеют гауссово распределение, а из всех статистических функций распределения, определенных на конечном интервале, максимальной энтропией обладает равномерное распределение, то для этого перекодируем входные переменные, чтобы все примеры в обучающей выборке несли примерно одинаковую информационную нагрузку.


Рис. 4 - Распределение процентных приращений котировок.

Алгоритм здесь следующий - отрезок от минимального процентного приращения до максимального разбивается на N отрезков, так, чтобы в диапазон значений каждого отрезка входило равное количество процентных приращений котировок.


Рис. 5 - Границы 6 отрезков, количество процентных приращений в каждом отрезке равно.

Далее перекодируем процентные приращения в классы, идентифицирующие каждый отрезок.

Рис. 6 - Перекодирование процентных приращений.

И получим равномерное распределение.


Рис. 7 - Равномерное распределение.

Задача получения входных образов для формирования обучающего множества в задачах прогнозирования временных рядов предполагает использование метода «окна». Этот метод подразумевает использование «окна» с фиксированным размером, способного перемещаться по временной последовательности исторических данных, начиная с первого элемента, и предназначены для доступа к данным временного ряда, причем «окно» размером N, получив такие данные, передает на вход нейронной сети элементы с 1 по N-1, а N-ый элемент используется в качестве выхода.


Рис. 8 - Метод «окна».

Качество обучающей выборки тем выше, чем меньше ее противоречивость и больше повторяемость. Для задач прогнозирования финансовых временных рядов высокая противоречивость обучающей выборки является признаком того, что способ описания выбран неудачно. Факторы влияющие на противоречивость и повторяемость:
1) количество элементов обучающей выборки - чем больше элементов, тем больше противоречивость и повторяемость;
2) количество классов на которые перекодировали процентные приращения - при увеличение снижается противоречивость и повторяемость;
3) глубина погружения в финансовый временной ряд («окно») - чем больше глубина, тем меньше противоречивость и меньше повторяемость.
При создании обучающей выборки, меняя эти параметры, необходимо найти баланс при котором уровень противоречивости минимален а повторяемость максимальна.

Для практического примера спрогнозируем направления приращений индекса РТС с 16.01.2012 по 17.04.2012 гг, период - день.


Рис. 9 - График индекса РТС с 8.01.2012 по 18.04.2012 гг, период - день.

Создадим коллекцию нейронных сетей, показавших наилучшие результаты (более 70% правильно спрогнозированных направлений изменений значения индекса) на тестовом множестве (последние 50 периодов). Через каждые 5 периодов коллекция пересоздается, в тестовое множество включается уже прогнозированные периоды. Нейронные сети, входящие в коллекцию не однотипны - у каждой подбирается размер обучающей выборки, количество классов на которые перекодируются процентные приращения, глубина погружения («окно») и количество нейронов в скрытом слое так, чтобы наиболее точно прогнозировала текущую рыночную ситуацию (последние 50 периодов).
Базовая архитектура используемых нейронных сетей - многослойный перцептрон с одним скрытым слоем. Есть прекрасная готовая реализация в библиотеке ALGLIB . В качестве алгоритма обучения используем L-BFGS алгоритм (limited memory BFGS), квази-Ньютоновский метод с трудоемкостью итерации, линейной по количеству весовых коэффициентов WCount и размеру обучающего множества, и умеренными требованиями к дополнительной памяти - O(WCount).

Пример коллекции:

Прогноз с: 16.01.2012 по: 20.01.2012
Количество сетей: 16
Параметры сетей:
Вход: 3 Скрытый слой: 18 Количество классов: 4 Длина обучающей выборки: 200 Результат на об. выб.: 74,6 Результат на тестовой выб.: 72,5
Вход: 3 Скрытый слой: 19 Количество классов: 4 Длина обучающей выборки: 200 Результат на об. выб.: 74,6 Результат на тестовой выб.: 72,5
Вход: 3 Скрытый слой: 20 Количество классов: 4 Длина обучающей выборки: 200 Результат на об. выб.: 74,6 Результат на тестовой выб.: 72,5
Вход: 4 Скрытый слой: 18 Количество классов: 4 Длина обучающей выборки: 200 Результат на об. выб.: 75,6 Результат на тестовой выб.: 74,5
Вход: 4 Скрытый слой: 20 Количество классов: 4 Длина обучающей выборки: 200 Результат на об. выб.: 74,1 Результат на тестовой выб.: 72,5
Вход: 5 Скрытый слой: 19 Количество классов: 4 Длина обучающей выборки: 200 Результат на об. выб.: 74,6 Результат на тестовой выб.: 70,6
Вход: 5 Скрытый слой: 20 Количество классов: 4 Длина обучающей выборки: 200 Результат на об. выб.: 76,1 Результат на тестовой выб.: 72,5
Вход: 4 Скрытый слой: 18 Количество классов: 5 Длина обучающей выборки: 200 Результат на об. выб.: 67,2 Результат на тестовой выб.: 74,5
Вход: 5 Скрытый слой: 18 Количество классов: 5 Длина обучающей выборки: 200 Результат на об. выб.: 70,6 Результат на тестовой выб.: 74,5
Вход: 5 Скрытый слой: 19 Количество классов: 5 Длина обучающей выборки: 200 Результат на об. выб.: 76,6 Результат на тестовой выб.: 74,5
Вход: 5 Скрытый слой: 20 Количество классов: 5 Длина обучающей выборки: 200 Результат на об. выб.: 76,1 Результат на тестовой выб.: 74,5
Вход: 3 Скрытый слой: 18 Количество классов: 4 Длина обучающей выборки: 270 Результат на об. выб.: 74,9 Результат на тестовой выб.: 70,6
Вход: 3 Скрытый слой: 19 Количество классов: 4 Длина обучающей выборки: 270 Результат на об. выб.: 74,9 Результат на тестовой выб.: 70,6
Вход: 3 Скрытый слой: 20 Количество классов: 4 Длина обучающей выборки: 270 Результат на об. выб.: 74,9 Результат на тестовой выб.: 70,6
Вход: 5 Скрытый слой: 18 Количество классов: 4 Длина обучающей выборки: 340 Результат на об. выб.: 78,0 Результат на тестовой выб.: 70,6
Вход: 5 Скрытый слой: 19 Количество классов: 4 Длина обучающей выборки: 340 Результат на об. выб.: 79,5 Результат на тестовой выб.: 74,5

Параметры всех использованных коллекций можно посмотреть в файле

Так как прогнозируем направление изменения индекса РТС, то используем простейшую стратегию - открываем позицию по цене закрытия текущего периода и закрываем ее по цене закрытия прогнозируемого периода, фиксируя прибыль или убыток.


Рис. 10 - Результат работы.

Результат работы с 16.01.2012 по 17.04.2012 гг: 77% правильно прогнозированных направлений изменений значения индекса.

Теги:

  • нейронные сети
  • фондовый рынок
Добавить метки