Основные положения по организации строительства автомобильных дорог. Классификация дорожно-строительных работ. Строительство автомобильных дорог Технология и организация строительства автомобильных дорог

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Кузбасский государственный технический университет имени Т.Ф. Горбачева»

Кафедра автомобильных дорог

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ

ПО ДИСЦИПЛИНЕ «ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА АВТОМОБИЛЬНЫХ ДОРОГ»

Кемерово 2013

Введение

Дорожное строительство с каждым годом растет по объёму работ и совершенствуется по качеству.

Строительство современных автомобильных дорог состоит из ряда сложных взаимосвязанных технологических процессов, для выполнения которых используются различные машины. Работы связаны с одновременным проведением добычи и переработки материалов для получения высококачественных полуфабрикатов и деталей. Работы приходится выполнять в разных природных и климатических условиях.

Работы, выполняемые на строительстве автомобильных дорог, по своему назначению, применяемым средствам производства и характерным особенностям организации делят на три группы: строительно-монтажные, заготовительные, транспортные.

Цель организации дорожно-строительных работ - при наименьших затратах трудовых и материальных ресурсов достигнуть наилучших результатов.

Основные задачи организации дорожных работ - повышение производительности труда, непрерывное улучшение качества работ с одновременным снижением их себестоимости и улучшением условий труда, повышение профессионально-технических знаний работающих, а также выполнение работ в заданные сроки.

Снижение себестоимости позволит увеличить годовые объёмы работ; сокращение продолжительности строительства и досрочный ввод дорог в эксплуатацию - снизить расходы по перевозкам за счет перевода движения на более качественную дорогу.

Строительно-монтажные работы выполняются непосредственно на объекте по возведению и монтажу сооружений в соответствии с проектом. После завершения этих работ дорога должна быть готовой к сдаче в эксплуатацию. Для выполнения строительно-монтажных работ необходимы разные материалы, заготовка которых выполняется в процессе заготовительных работ.

Транспортными работами по доставке дорожно-строительных материалов полуфабрикатов и новых изделий от мест их заготовки, переработки и изготовления к местам использования. Транспортные работы являются связующим звеном между строительно-монтажным и заготовительными работами. Все три группы работ должны быть тщательно увязаны между собой по объектам и времени выполнения.

Календарное планирование служит основным средством для согласования работ производственных организаций и обслуживающих их подразделений, установления органов, последовательности, состава исполняемости и места производства. Документами календарного планирования, фиксирующими полученные решения, являются календарные планы.

1 . Характеристика природных условий района строительства

Район строительства - Кемеровская область. Она расположена в Кузнецкой котловине, по окраинам Салаирский кряж и Кузнецкий Алатау (высота 2178 м). По дорожно-климатическому районированию Кемеровская область относится к III климатической зоне со средними температурами января от - 17 до - 20 , июля от 17 до 20, осадков выпадает 300-500 мм в год.

В соответствии со СНиП 23-01-99 «Строительная климатология» имеем следующие климатические данные:

Таблица 1.1 - Средняя температура наружного воздуха по месяцам

Средняя температура наружного воздуха по месяцам, С

Таблица 1.2 - Продолжительность светового дня по месяцам

Таблица 1.3 - Повторяемость ветров

Рисунок 1.1 - Розы ветров

2 . Определение общего срока строительства и сроков выполнения отдельных видов работ

На основе анализа климатических условий составляем ведомость продолжительности строительного сезона для различных работ, намеченных при строительстве земляного полотна и данной дорожной одежды.

При составлении ведомости продолжительности строительного сезона учитываем допускаемую температуру для производства того или иного вида работ, а так же продолжительность светового дня.

Рисунок 2.1 - Дорожно-климатический график

Таблица 2.1 - Ведомость продолжительности выполнения работ

Показатели

Конструктивные слои

кзАБ

мзАБ

Минимальная температура производства работ:

весной

осенью

без огр.

без огр.

без огр.

без огр.

Календарные сроки производства работ по климатическим факторам:

весной

осенью

без огр.

без огр.

без огр.

без огр.

Календарные сроки производства работ по световому фактору при 11 - часовой рабочей смене

весной

осенью

без огр.

без огр.

без огр.

без огр.

Календарные сроки производства работ по световому фактору при 8-часовой рабочей смене

весной

осенью

без огр.

без огр.

без огр.

без огр.

Принятые календарные сроки производства работ при 11-часовой рабочей смене

весной

осенью

весь год

весь год

весь год

весь год

Календарное число дней строительства при 11-часовй рабочей смене

Сменность работы

Число рабочих смен

Число простоев, % от календарного числа дней строительства

Коэффициент увеличения продолжительности строительства из-за простоев

3 . Потребность в основных дорожно-строительных материалах

Рисунок 3.1 - Поперечный профиль, строящейся автодороги

Расчет потребности дорожно-строительных материалов производится исходя из геометрических параметров каждого конструктивного слоя.

Поперечный профиль автомобильной дороги смотри в приложении А.

Требуемое количество материала определяется из зависимостей:

Для материалов, оперируемых по объему (м3):

Для материалов, оперируемых по массе (т):

где Sп - площадь поперечного сечения конструктивного слоя, м2;

L - протяженность захватки (дороги и т. д.), м;

kзу - коэффициент запаса на уплотнение;

kп - коэффициент потерь, принимаемый для зернистых несвязных материалов 1,04, укрепленных каменных материалов - 1,03, бетонных и асфальтобетонных смесей - 1,02, вяжущих - 1,01;

с - плотность материала в плотном теле, т/м3;

Расчет требуемого объема материала на 1 км дороги:

Для слоя мелкозернистого асфальтобетона:

S = 4*0,04*2=0,32 м2; L=1000 м; kп = 1,02; с = 2,31 т/м3

Для слоя крупнозернистого асфальтобетона:

S = 4*0,08*2=0,64 м2; L=1000 м; kп = 1,02; с = 2,28 т/м3

Для слоя щебня по способу заклинки:

S = 2,83 м2; L=1000 м; kзу = 1,3; kп = 1,04

Для досыпки обочины ЩПС:

S = 1,5*0,12*2=0,36 м2; L=1000 м; kзу = 1,3; kп = 1,04

Для мелкозернистого асфальтобетона, тип Б, марка I:

Щебень фракции 5-20 мм, содержание 37 %

Таблица 3.1 - Потребность в основных дорожно-строительных материалах

Наименование

конструктивного слоя

Площадь поперечного сечения, м2

Плотность материала, т/м2

Коэффициент потерь

Коэффициент запаса на уплотнение

Потребность материала на 1км, т (м3)

Потребность материала на всю дорогу, т (м3)

Мелкозернистый плотный асфальтобетон, тип Б, марка I, (т)

Крупнозернистый пористый асфальтобетон, марка III, (т)

Щебень, устроенный по способу заклинки, (м3)

Щебеночно-песчаная смесь досыпки обочин, (м3)

М=(754*(1-0,04)*0,37)=268 т

Масса фракции, т; - Насыпная плотность, т/;

Коэффициент потерь

Для других материалов объем рассчитывается по тем же формулам. Результаты вычислений сведены в таблицы.

Таблица 3.2 - Потребность в составляющих материалах для мелкозернистого плотного асфальтобетона, тип Б, марка I

Насыпная плотность,

Коэффициент потерь

Щебень фракции 5-20 мм (754*(1-0,04)*0,37)

Песок (754*(1-0,04)*0,60)

Минеральный порошок (754*(1-0,04)*0,03*1,01)

Битум (754*0,06*1,01)

Битум для подгрунтовки (0,25 л/*8000*1,01)

Таблица 3.3 - Потребность в составляющих материалах для крупнозернистого пористого асфальтобетона, марка III

Наименование составляющего материала

Потребность составляющих материалов на 1 км

Насыпная плотность,

Коэффициент потерь

Щебень фракции 20-40 мм

(1489*(1-0,08)*0,17)

Щебень фракции 5-20 мм

(1489*(1-0,08)*0,29)

Песок (1489*(1-0,08)*0,54)

Битум (1489*0,05*1,01)

Битум для подгрунтовки (0,25 л/*8000*1,01)

Таблица 3.4 - Потребность в составляющих материалах для щебеня, устроенного по способу заклинки

Наименование составляющего материала

Потребность составляющих материалов на 1 км

Фактическая влажность

Оптимальная влажность,

Щебень фракции 70-120 мм (1920*0,96)

Щебень фракции 20-40 мм

Вода (1920*(1-0,04)*(0,08-0,04))

Таблица 3.5 - Потребность в составляющих материалах для щебеночно-песчаной смеси досыпки обочин

4 . Определение продолжительности выполнения отдельных видов работ

Подготовительные работы

Геодезическая разбивка трассы выполняется в теплый период года при отсутствии снегового покрова, в светлое время суток. Геодезическая разбивка и закрепление трассы совмещаются с работами по прокладке «пионерной» дороги и расчистке дорожной полосы от леса, пней и кустарника. При отсутствии леса и кустарника скорость разбивки трассы принимаю 2 км в смену. Расчисткой дорожной полосы от леса, пней и кустарников занимается 1 специализированный отряд. Вычисляем общие затраты времени на выполнение работ по расчистке дорожной полосы.

Таблица 4.1- Продолжительность выполнения подготовительных работ по расчистке дорожной полосы от леса, пней и кустарников

Строительство искусственных сооружений

Строительство искусственных сооружений планируется в одну смену, в течение всего строительного периода. Продолжительность строительства искусственных сооружений рассчитываем по следующим формулам:

Для мостовых сооружений:

Для водопропускных труб:

где Nсм - количество смен; Lсоор - длина сооружения, м.

Таблица 4.2 - Продолжительность строительства искусственных сооружений

КМ дороги

Длина ИССО

Коэффициент простоев

Продолжительность смен

Определение возможной продолжительности выполнения отдельных видов земляных работ

Определяем возможные сроки производства работ по снятию растительного слоя грунта 1 бульдозером.

Производительность бульдозера Dressta TD - 20 M

Коэффициент, учитывающий потери грунта в процессе перемещения, равный

Перемещения грунта, м;

Время полного цикла бульдозера, ч;

Коэффициент, учитывающий группу грунта по трудности разработки,

Коэффициент перехода от технической производительности к эксплуатационной,

Длина отвала бульдозера, м; - высота отвала бульдозера, м;

Поправочный коэффициент; - коэффициент разрыхления (для связных грунтов принимаем 1,25);

Время на нарезание грунта, ч;

Затраты времени на перемещение грунта, ч;

Время обратного хода, ч; - время на переключение передач, подъём и опускание отвала, ч (;

Скорость бульдозера в прямом и обратном направлении

Сменная производительность равна

Возможные сроки производства работ по снятию растительного слоя грунта 1 бульдозером определяем по формуле:

ТП - продолжительность смен;

V - объем работ, тыс. м3;

П - производительность м2;

КП - коэффициент простоев.

Дальнейшие вычисления сводим в таблицу 4.3.

Таблица 4.3 - Возможные сроки производства работ по снятию растительного слоя грунта 1 бульдозером

Таблица 4.4 - Возможные сроки производства работ по возведению насыпи из боковых резервов 1 бульдозером

Снятие растительного грунта и возведение насыпи из боковых резервов производим ступенями, в результате не произойдет переувлажнения грунта основания земляного полотна.

Для увеличения скорости ведения работ на первом и втором участке примем два бульдозера Dressta TD - 20 M, а на третьем и четвертом один бульдозер Dressta TD - 20 M.

Зону действия карьеров определяем как равноудаленную точку от двух карьеров:

Определим удельную среднюю дальность транспортирования грунта (таблица 4.5).

Протяженность зоны действия карьера, выемки, км;

Расстояние от карьера до дороги, км;

i - километр участка строящейся дороги, на который выходит технологическая дорога от грунтового карьера, км

Таблица 4.5 - Выбор ведущей техники при выполнении линейных и сосредоточенных земляных работ

№ карьера

Значения параметров, км.

V,тыс/

На основе этих данных определим значение удельной средней дальности транспортирования грунта:

где Vi - разрабатываемый объем грунта в i-ой карьере, тыс.м3;

(Lср)I - средняя дальность транспортировки грунта в i-ой выемке (карьера) до сооружаемого земляного полотна, км.

Удельная средняя дальность транспортирования грунта больше, чем 1 - 1,5 км, значит, в качестве ведущей машины принимаем экскаватор.

При отсыпке насыпи из выемки и карьера используется экскаватор вместимостью ковша 1,6 м3. Производительность экскаватора посчитаем по формуле:

где q - объем ковша, м3;

tц - продолжительность рабочего цикла экскаватора, ч;

kр - коэффициент рыхления, для связных грунтов

kн - коэффициент наполнения ковша экскаватора

kэ = 0,7 - при разработке грунта с погрузкой в транспортные средства,

kэ = 0,85 - при работе в отвал.

Возможные сроки производства работ по возведению земляного полотна из грунта карьеров, линейных и сосредоточенных работ 1 экскаватором представлены в таблицах 4.6 и 4.7.

Таблица 4.6 - Возможные сроки производства линейных работ по возведению земляного полотна из грунта карьеров 1 экскаватором

Таблица 4.7 - Возможные сроки производства сосредоточенных работ по возведению земляного полотна из грунта карьеров 1 экскаватором

5 . Определение требуемого числа экскаваторов и количество МДО

Таблица 5.1 - Количество рабочих смен для работы 1 экскаватора

№ участка

Количество рабочих смен работы экскаватора

При разработке грунта выемок

На линейных работах

На сосредоточенных работах

Определяем приблизительное число требуемых экскаваторов:

где k - коэффициент, учитывающий необходимость проведения работ по снятию растительного слоя грунта, возведению земляного полотна из боковых резервов, выполнения сосредоточенных работ, строительства искусственных сооружений и прочие работы; Тэкс - общее число рабочих смен экскаватора; Траб - число рабочих смен за строительный период;

nзп - планируемое число строительных периодов, отводимых на возведение земляного полотна.

Таблица 5.2 - Требуемое число экскаваторов

Таблица 5.3 - Количество МДО на земляных работах

6. Определение оптимальных длин захваток при ведении работ по строительству слоев дорожной одежды

Оптимальную длину захватки при строительстве слоев дорожной одежды выбираем из производительности ведущей машины (оборудования). Однако при выборе захватки необходимо учитывать также производительность всей вспомогательной техники принимать такое ее значение, при котором коэффициент использования (загрузки) всего оборудования будет максимальным.

Прежде чем комплектовать машино-дорожный отряд и принимать оптимальную длину захватки, необходимо определить виды работ при строительстве отдельных слоев дорожной одежды и определить ведущую и вспомогательные машины и оборудование.

Строительство основания из щебня по способу заклинки смеси (ЩЗ)

Таблица 6.1 - Результаты расчета возможной длины захватки для устройства слоя из ЩЗ

Наименование операции,

Производительность, м2/смену

Общий объем работ, м2

Длина трассы

Погрузка щебня

Распределение щебня основной фракции 70-120 (Автогрейдер ДЗ-98 В)

Увлажнение щебня (ЭД-244 ПМ)

Уплотнение щебня за 6 проходов (HAMM HD 70K)

Уплотнение щебня за 4 прохода (HAMM HD 140 VV)

Распределение щебня расклинивающей фракции 20-40 (Автогрейдер ДЗ-98 В)

Увлажнение расклинивающей фракции (ЭД-244 ПМ)

Уплотнение после расклинцовки за 12 проходов

Уплотнение после расклинцовки за 8 проходов

(HAMM HD 140 VV)

Расчет производительности всех машин и механизмов представлен в приложении Б

Строительство нижнего слоя асфальтобетонного покрытия

Таблица 6.2 - Результаты расчета возможной длины захватки для устройства нижнего слоя асфальтобетонного покрытия

Наименование операции,

наименование техники и ее марка

Производительность, м2/смену

Общий объем работ, м2

Длина трассы

Возможная длина захватки, м/смену

Уплотнение смеси за 4 прохода по следу (гладковальцовый каток ДУ 47 Б-1 массой 8 т)

Строительство верхнего слоя асфальтобетонного покрытия

Таблица 6.3 - Результаты расчета возможной длины захватки для устройства слоя из плотного асфальтобетона

Производительность, м2/смену

Общий объем работ, м2

Длина трассы

Возможная длина захватки, м/смену

Подгрунтовка основания (автогудронатор ДС-39)

Приготовление смеси (установка ДС-168)

Распределение смеси (асфальтоукладчик Vogele Super 1600-1)

Уплотнение смеси за 4 прохода по следу (гладковальцовый катком ДУ 47 Б-1 массой 8т)

Уплотнение асфальтобетонной смеси за 6 проходов по следу (комбинированный каток BOMAG BW 164 АС-2 массой 9,2т)

Доуплотнение асфальтобетонной смеси за 6 проходов (тяжелый гладковальцовый каток ДУ -84)

Расчет производительности всех машин и механизмов представлен в приложении Б.

Таблица 6.4 - Результаты расчета возможной длины захватки для досыпки обочин ЩПС

Наименование операции, наименование техники и ее марка

Производительность, м2/смену

Общий объем работ,

Длина трассы

Возможная длина захватки, м/смену

Погрузка ЩПС

(фр. погрузчик Hitachi LX 300-7)

Распределение ЩПС (машина для отсыпки обочин БЦМ - 73)

Поливка водой (поливомоечная машина ЭД-244 ПМ)

Обжимка ЩПС за 3 прохода (средний комбинированный каток HAMM HD 70K массой 10т)

Уплотнение ЩПС за 6 проходов (средний комбинированный каток HAMM HD 70K массой 10т)

Доуплотнение ЩПС за 12 проходов (гладковальцовый каток HAMM HD 140 VV массой 14,8т)

Расчет производительности всех машин и механизмов представлен в приложении Б.

7 . Выбор числа и месторасположения притрассовых складов и производственных предприятий

Предприятия дорожно-строительного производства и притрассовые склады размещаются исходя из двух основных требований: стоимость единицы готовой продукции должна быть минимальной; время на транспортировку материала не должно превышать технологических ограничений.

На данной дороге необходимо разместить один асфальтобетонный завод (АБЗ). Из расчета дальности возки материалов с карьеров по технологическим дорогам к строящейся автомобильной дороге и минимизации транспортных расходов, а так же из соображения, что асфальтобетонные слои лучше устраивать от АБЗ, разместим механизированный комплекс заводов на 1 километре.

Притрассовые склады устраивают с целью уменьшения количества автотранспорта, занятого на транспортировке каменных материалов до места производства работ.

Притрассовые склады, располагаю на 1, 10, 18 километре. Расстояние между ними - не менее 5. Рекомендуемое для III категории дороги расстояние между складами должно быть не менее 5 км, так как частое расположение складов приводит к необходимости увеличения временной полосы отвода, что приводит к увеличению затрат на подготовку земли под устройство склада и большим технологическим потерям.

Так, разместив склады и производственные предприятия, можно составить стройгенплан автомобильной дороги (приложение Б).

Определим объем каждого материала, завозимого на притрассовый склад, и геометрические параметры складов. Объем зависит от потребности материала на 1 км и от зоны действия склада (расчет в таблице).

Геометрические параметры штабелей характеризуются их длиной, высотой и крутизной заложения откосов наклонной площадки. Объем материала в штабеле определяется по формуле:

где L - длина штабеля, м;

H - высота штабеля, м;

а - ширина наклонной площадки для проезда бульдозера, м;

i - коэффициент крутизны заложения наклонной площадки.

Таблица 7.1 - Объем дорожно-строительных материалов, завозимых на притрассовые склады

№ склада

Наименование завозимого материала

Требуемый объем материала, м3

на 1 км дороги

на зону действия склада

на всю трассу (26 км)

1 год строительства

2 год строительства

Рассчитаем объём штабеля для ПС1, ПС2 и ПС3 на первый год и второй год строительства:

Для ПС1 в 1 год строительства высоту штабеля возьмем 10 м, ширину наклонной площадки 90 м коэффициент крутизны заложения наклонной площадки 11, длину штабеля принимаем 90 м.

Длина штабеля, м; - высота штабеля, м; - ширина наклонной площадки, м; - коэффициент крутизны заложения наклонной площадки.

Рисунок 7.1 - Схема штабеля для ПС 1 в 1 год строительства

Для ПС2 и ПС3 в 1 год строительства высоту штабеля возьмем 9 м, ширину наклонной площадки 85 м коэффициент крутизны заложения наклонной площадки 14, длину штабеля принимаем 85 м.

Рисунок 7.2 - Схема штабеля для ПС 2 и 3 в 1 год строительства

Для ПС 1 во второй год строительства высоту штабеля возьмем 4 м, ширину наклонной площадки 50 м коэффициент крутизны заложения наклонной площадки 15, длину штабеля принимаем 50 м.

Рисунок 7.3 - Схема штабеля для ПС 1 во 2 год строительства

Для ПС 2 и 3 во второй год строительства высоту штабеля возьмем 4 м, ширину наклонной площадки 45 м коэффициент крутизны заложения наклонной площадки 15, длину штабеля принимаем 45 м.

Таблица 7.4 - Схема штабеля для ПС 2 и 3 во 2 год строительства

Геометрические параметры складов зависят от геометрических размеров штабелей, их количества и взаимного расположения. Принятые значения геометрических параметров приведены в таблице 7.2.

Таблица 7.2 - Геометрические параметры штабелей и притрассовых складов

№ склада

№ штабеля (материала)

Геометрические параметры, м

Ширина наклонной площадки

крутизна

1 год строительства

2 год строительства

Площадь каждого склада 100*100 = 10000 м2 это не превышает 1га, значит процесс завоза материала будет производиться в полном объеме.

8. Определение количества автотранспорта на основных видах работ

Расчет количества автотранспортных средств для перевозки материалов или грунта на каждую сменную захватку определяется по формуле:

где - оператор округления до ближайшего большего целого значения;

Требуемый сменный объем материала (грунта), т (м3);

Сменная производительность одного автосамосвала (м3/смену), зависящая, в том числе, от дальности транспортировки:

Сменная производительность транспортного средства рассчитывается по формуле:

Продолжительность смены, ч;

Объем кузова автомобиля, м3;

Коэффициент использования по времени транспортного средства (0,85)

Дальность транспортировки, км;

Время на погрузку и разгрузку материала, ч ();

Среднетехническая скорость транспортного средства, принимаем 30 км/ч.

Расчетной машиной принимаем КамАЗ 6520грузоподъемностью 20 т и объемом кузова 12 м3 . При расчете производительности машин для перевозки грунта и щебеночно-песчаной смеси в расчетах учитывается объем кузова, а для перевозки асфальтобетона - грузоподъемность.

Потребность в транспортных средствах рассчитывается отдельно для каждого слоя дорожной одежды и машинно-дорожных отрядов, занятых при возведении земляного полотна.

Таблица 8.1 - Количество автомобилей на строительстве земляного полотна

Таблица 8.2 - Расчет потребности автосамосвалов для устройства слоя основания из щебня устроенного по способу заклинки

Таблица 8.3 - Расчет потребности автосамосвалов для устройства слоя из крупнозернистого пористого асфальтобетона марки 3

Таблица 8.4 - Расчет потребности автосамосвалов для устройства слоя основания из мелкозернистого асфальтобетона, тип Б марки 1

Таблица 8.5 - Расчет потребности автосамосвалов отсыпки обочин ЩПС

9 . Определение потребности автотранспорта для выполнения подготовительных работ

К транспортным подготовительным работам относится завозка дорожно-строительных материалов на притрассовые склады и склады производственных предприятий.

Требуемое количество машино-смен зависит от объемов материалов, завозимых на склады, и определяется по зависимости:

где - объем i-го материала, завозимого на k-тый склад, т (м3);

Производительность автосамосвалов при транспортировке i-го материала на k-тый склад каменных материалов, т/смену (м3/смену);

n - количество материалов, завозимых на k-тый склад;

m - число притрассовых складов.

При завозке материалов необходимо в первую очередь использовать те машины, которые высвобождаются на основных работах.

Число высвободившихся машино-смен определяется по формуле:

где - число высвободившихся автосамосвалов i-го прямоугольника;

Число смен, при которых количество высвобождаемых автосамосвалов остается постоянным;

n - количество прямоугольников, на которые разбита суммарная эпюра потребности в автосамосвалах.

При недостаточном количестве высвобождаемых машино-смен завозка материалов осуществляется в период, когда основные работы не выполняются. Число недостающих машин:

Планируемое количество машин для завозки материалов в зимний период определяется следующим образом:

где - продолжительность дополнительной завозки материалов, смен.

Результаты расчета приведены в таблице 9.1, 9.2.

Таблица 9.1 - Результаты определения потребности автотранспорта для выполнения работ в первый год строительства

Номер склада

Павт, м3/смену

Ri, машино-смен

R, машино-смен

Rвысв, машино-смен

Rнед, машино-смен

Тзим, смен

(Nавт)зим, шт.

Таблица 9.2 - Результаты определения потребности автотранспорта для выполнения работ во второй год строительства

Номер склада

АБЗ 2 слой а/б

АБЗ 1 слой а/б

Наименование материалов, завозимых на склад

Павт, м3/смену

Ri, машино-смен

R, машино-смен

Rвысв, машино-смен

Rнед, машино-смен

Тзим, смен

(Nавт)зим, шт.

10. Определение требуемого количества рабочей силы

Эпюра потребности рабочей силы строится на основании численности рабочих в составе каждого МДО и суммарной эпюры потребности в автотранспорте. Для этого суммарная эпюра потребности в автотранспорте зеркально отражается на противоположной стороне линейно-календарного графика и достраивается путем добавления количества рабочих в те периоды времени, когда осуществляет работу тот или иной машинно-дорожный отряд.

На основании ЕНиРов (сборник 2, 17, 4, 5 ,7, 8, 9, 10) составлена таблица 10.1 численного состава рабочих.

Таблица 10.1 - Состав звена рабочих

Наименование технологической операции

Состав звена рабочих

должность

численный состав

1 Расчистка от леса, пней и кустарника (МДО 1,2)

С диаметром ствола до 32см

лесорубы и рабочие

машинисты

2. Устройство технологической дороги (МДО 3)

Планировка площади корыта бульдозером

машинист 6 разряда

Погрузка грунта в автосамосвалы погрузчиком

машинист 6 разряда

машинист 6 разряда

Уплотнение гладковальцовым катком

машинист 6 разряда

Распределение щебня автогрейдером

машинист 6 разряда

дорожный рабочий 3 разряда

геодезист

3 Снятие растительного слоя и разработка грунта из боковых резервов (МДО 4,5)

Срезка растительного слоя бульдозером

Разработка грунта из боковых резервов

машинист 6 разряда

дорожный рабочий

4. Устройство водопропускных труб (МДО 14, 15, 16, 17)

машинисты

Сборка секций труб

Устройство стыков труб

Укладка трубы на основание

монтажники конструкции

машинист крана

Устройство щебеночной подушки

землекопы

Засыпка грунтом

машинист 3 разряда

5. Устройство мостов (МДО 8, 9, 10)

Забивка крайних свай

Забивка передних свай

Установка пролетных строений

Устройство мостового полотна

6. Разработка грунта карьера на сосредоточенную насыпь

Разработка грунта экскаватором

машинист 6 разряда

дорожный рабочий

Уплотнение кулачковым катком

машинист 6 разряда

машинист 6 разряда

7. Разработка грунта насыпи

Разработка грунта экскаватором

машинист 6 разряда

дорожный рабочий

Уплотнение кулачковым катком

машинист 6 разряда

Уплотнение вибрационным катком

машинист 6 разряда

8. Устройство слоя основания из щебня по методу заклинки (МДО 11)

машинист 6 разряда

Планировка верха земляного полотна автогрейдером ДЗ 98В

машинист 6 разряда

Доуплотнение верха земляного полотна катком ДУ 58

машинист 6 разряда

Увлажнение ЩПС ЭД 244 ПМ

машинист 5 разряда

Обжимка ЩПС каток ДУ 64

машинист 6 разряда

Уплотнения ЩПС ДУ 64

машинист 6 разряда

Уплотнение ЩПС комбинированным катком ДУ 58

машинист 6 разряда

9. Устройство нижнего слоя а/б (МДО 12)

машинист 5 разряда

машинист 6 разряда

операторы укладчика

дорожный рабочий

машинист 6 разряда

машинист 6 разряда

10. Устройство верхнего слоя а/б (МДО 12)

Подгрунтовка основания автогудронатором ДС-39.

машинист 5 разряда

Распределение смеси асфальтоукладчиком Vogele Super 1600-1

машинист 6 разряда

операторы укладчика

дорожный рабочий

Уплотнение смеси гладковальцовым катком ДУ 47 Б-1

машинист 6 разряда

Уплотнение смеси комбинированным катком BOMAG BW 164 АС-2

машинист 6 разряда

11. Досыпка обочин ЩПС (МДО 13)

Погрузка ЩПС погрузчиком Hitachi LX 300-7

машинист 6 разряда

Распределение материала БЦМ - 73

машинист 6 разряда

Увлажнение ЩПС ЭД 244 ПМ

машинист 5 разряда

Уплатнение средним катком HAMM HD 70K

машинист 6 разряда

До уплотнение HAMM HD 140 VV

машинист 6 разряда

Список литературы

1. Шабаев С.Н. Методическое указание по выполнению курсового работы по дисциплине «Организация строительства автомобильных дорог» / С.Н. Шабаев; ГУ КузГТУ. - Кемерово, 2010. - 36 с.

2. СНиП 2.05.02-85*. Автомобильные дороги [Текст] / Госстрой СССР. - М.: ЦИТП Госстроя СССР, 1986. - 56 с.

3. СНиП 23-01-99*. Строительная климатология [Текст] / Госстрой России. - М.: ГУП ЦПП, 2003. - 136 с.

4. СНиП 3.06.03-85. Автомобильные дороги [Текст] / Госстрой России. - М.: ГУП ЦПП, 2001. - 112 с.

5. Некрасов В.К. Строительство автомобильных дорог [Текст]: в 2 ч. / под ред. В. К. Некрасова. - М.: Транспорт, 1980. Ч. 1. - 416 с; Ч. 2. - 416 с.

6. ЕНиР. Сборник Е2. Земляные работы. Выпуск 1. Механизированные и ручные земляные работы / Госстрой СССР - М.: Стройиздат, 1989.-224 с.

7. ЕНиР. Сборник №17. Строительство автомобильных дорог / Госстрой СССР. - М.: Стройиздат, 1989. - 48 c.

8. ЕНиР. Сборник Е5.Монтаж металлических конструкций. Выпуск 3. Мосты и трубы / Госстрой СССР - М.: Стройиздат, 1989.-224 с.

9. ГОСТ Р 52399-2005. Геометрические элементы автомобильных дорог [Текст] / МАДИ. - М.: Стандартинформ, 2006. - 8 с.

Приложение А

Приложение Б

Распределение щебня автогрейдером ДЗ-98 В

Сменная производительность будет равна м3/смену.

Увлажнение щебня поливомоечной машиной ЭД-244 ПМ

Рабочая скорость, км/ч;

Сменная производительность будет равна 11*5906=64966 м2/смену.

Уплотнение щебня комбинированным катком HAMM HD 70K за 6 проходов

Уплотнение щебня гладковальцовым катком HAMM HD 140 VV за 4 прохода

Расчет 8. Уплотнение щебня после расклинцовки комбинированным катком HAMM HD 70 K

Уплотнение щебня после расклинцовки гладковальцовым катком HAMM HD 140 VV

Оптимальную захватку при устройстве основания определяем из учета максимальной загрузки всей используемой техники. Для этого строим график зависимости критериев оптимальности от длины захватки.

Рисунок 1 - Зависимость суммарного значения коэффициента использования всех машин от длины захватки

Принимает длину захватки равной 360 м/смену. При этом необходимо увеличить количество катков HAMM HD 70K до двух штук, чтобы обеспечить данный темп работ.

Строительство нижнего слоя асфальтобетона

Подгрунтовка основания автогудронатором ДС-39.

где: t1- время наполнения 1т битума, ч;

q - вместимость цистерны, т;

Расчет 2. Приготовление асфальтобетонной смеси на установке

Сменная производительность будет равна 11x35,3=388,3 м3/смену.

Сменная производительность будет равна 11x54,7=601,7 м3/смену.

Сменная производительность будет равна 11x60=660м3/смену.

Длина захватки назначаем 260 метров в смену, по производительности катка ДУ 47 Б-1.

Строительство верхнего слоя асфальтобетона

Расчет 1. Подгрунтовка основания автогудронатором ДС-39.

t1- время наполнения 1т битума, ч;

t2 - норма времени на разлив 1 т битума, ч;

q - вместимость цистерны, т;

К - коэффициент использования за смену;

Т- продолжительность смены, ч;

l - средняя дальность возки, км.

Слой асфальтобетона устраивается на ширину 9,0 метров. При норме розлива 0,25 л/, автогудронатор ДС-39 может за смену подгрунтовать 58400 .

Приготовление асфальтобетонной смеси на установке ДС-168

Распределение асфальтобетонной смеси асфальтоукладчиком Vogele Super 1600-1

Сменная производительность равна.

Уплотнение асфальтобетонной смеси гладковальцовым катком ДУ 47 Б-1 массой 8 т за 4 проходов по следу.

Сменная производительность будет равна 11x17,7=194,2 м3/смену.

Уплотнение асфальтобетонной смеси комбинированным катком BOMAG BW 164 АС-2 массой 9,2 т за 6 проходов по следу.

Сменная производительность будет равна 11x27,4=300,9 м3/смену.

Доуплотнение асфальтобетонной смеси катком тяжелым гладковальцовым ДУ-84 за 6 проходов.

Сменная производительность будет равна 11x30=330м3/смену.

Длина захватки назначаем 257 метров в смену, по производительности катка ДУ 47 Б-1.

Досыпка обочин щебеночно-песчаной смесью

Расчет 2. Распределение ЩПС машиной для отсыпки обочин

БЦМ - 73, на базе тяжелого погрузчика К702.

Теоретическая производительность()

Коэффициент использования внутрисменного времени (

Коэффициент перехода от технической производительности к эксплуатационной, (

Сменная производительность будет равна 11*84=924 т/смену.

Поливка водой поливомоечной машиной ЭД-244 ПМ до оптимальной влажности.

Ширина обрабатываемой полосы, м;

Ширина перекрытия обрабатываемой полосы в случаи, когда вся требующая обработки полоса больше;

Рабочая скорость, км/ч;

Дальность транспортировки воды, км;

Скорость транспортировки воды, км/ч;

Время накопления цистерны, ч;

Время на опорожнение цистерны воды, ч;

Коэффициент использования внутреннего времени;

Коэффициент перехода от технической производительности к эксплуатационной;

Расчет 4. Обжимка ЩПС средним комбинированным катком HAMM HD 70K массой 10 т за 3 прохода.

Расчет 5.Уплотнение ЩПС средним комбинированным катком HAMM HD 70K массой 10 т за 6 проходов.

Расчет 6.Уплотнение ЩПС средним гладковальцовым катком HAMM HD 140 VV массой 14,8 т за 6 проходов.

дорожный строительство обочина захватка

Захватку определяем по ведущей машине БЦМ - 73 на базе тяжелого погрузчика К702. Для досыпки обочины принимаем 636 метров в смену.

Размещено на Allbest.ru

Подобные документы

    Анализ природно-климатических условий района строительства. Определение продолжительности работы специализированных отрядов. Проектирование организации работ по строительству дорожной одежды. Технологическая схема потока по устройству дорожной одежды.

    курсовая работа , добавлен 31.03.2010

    Дорожно-климатические условия района строительства автомобильной дороги. Конструкция дорожной одежды. Технологическая последовательность строительства конструктивных слоев дорожной одежды. Определение сводной потребности в материальных ресурсах.

    курсовая работа , добавлен 24.05.2012

    Характеристика района строительства дороги - Вологодская область. Составление общей ведомости объемов дорожно-строительных материалов. Контроль качества строительства конструктивных слоев дорожной одежды. Техника безопасности при выполнении работ.

    курсовая работа , добавлен 09.12.2014

    Изучение условий строительства. Определение количества рабочих смен. Расчет потребности в основных дорожно-строительных материалах и полуфабрикатах. Выбор расположения производственного предприятия. Технология и организация устройства дорожной одежды.

    курсовая работа , добавлен 11.10.2013

    Условия строительства, характеристика строящейся автодороги. Определение нормативной продолжительности строительства. Разработка принципиальной схемы строительства. Организация работ по укладке дорожной одежды. Выбор машин для производства работ.

    курсовая работа , добавлен 23.06.2016

    Анализ природно-климатических условий района строительства. Техническая характеристика дороги. Размещение производственных предприятий и обеспечение строительства материалами. Технологическая схема комплексной механизации устройства дорожной одежды.

    дипломная работа , добавлен 12.02.2011

    Характеристика и инженерная оценка условий района строительства автомобильной дороги. Подсчет объемов дорожно-строительных работ, требования к строительным материалам. Проектирование технологии работы асфальтобетонного завода и выбор оборудования.

    курсовая работа , добавлен 07.04.2013

    Анализ природных условий района проектирования автомобильной дороги. Характеристика дорожно-строительных материалов. Варианты конструкций дорожной одежды, проект транспортной развязки, гидравлический расчет мостов и труб. Проект и смета строительства.

    дипломная работа , добавлен 14.11.2011

    Анализ природно-климатических, грунтовых и гидрологических условий района строительства дороги. Определение сроков и объемов производства работ. Технология и организация строительства дорожных одежд. Контроль качества, охрана труда и окружающей среды.

    курсовая работа , добавлен 23.04.2009

    Организация работ по строительству искусственных сооружений. Определение расчётной скорости потока при одногодичном строительстве. Выполнение линейных земляных работ и технология строительства дорожной одежды. Построение линейного календарного графика.

0

Архитектурно-строительный факультет

Кафедра автомобильные дороги и аэродромы

Расчетно-графическая работа

Технология и организация строительства автомобильных дорог. Строительство дорожной одежды.

Пояснительная записка

Введение

Дорожное хозяйство Российской Федерации на современном этапе развития государства является неотъемлемой частью единой транспортной системы страны, призванной содействовать решению общегосударственных и региональных социально-экономических проблем, а также осуществлению исполнения конституционного права граждан Российской Федерации на свободу передвижения. Поэтому строительство новых и реконструкция существующих автодорог является важнейшей отраслью промышленности в Российской Федерации.

Неотъемлемой частью строительства и реконструкции автодорог является проектирование. Стремясь к экономии материальных затрат на строительство дороги, необходимо качественное обоснование эффективности затрат в процессе проектирования. Проектирование современной дороги - это поиск компромисса между рядом противоречивых требований, а именно: минимума строительных работ, наибольшей эффективности и безопасности автомобильных перевозок, использование малоценных земель, охраны природы. Добиться рациональных решений данных требований возможно при максимальном количестве вариантов проектных решений. Необходимо совершенствование научного и технического уровня проектирования.

Автомобильные дороги подвержены активному воздействию многочисленных природных и климатических факторов (снежным заносам, увлажнению выпадающими осадками, поверхностными и грунтовыми водами и др.). Эти особенности функционирования автомобильных дорог обязательно должны быть учтены при проектировании проектной линии продольного профиля (назначение руководящих рабочих отметок, контрольных отметок водопропускных сооружений) и земляного полотна.

Многообразие природных условий Российской Федерации не допускает использования типовых проектов и трафаретных решений. Поэтому от проектировщиков, прежде всего, требуются творческий подход к проектированию автомобильных дорог, умение находить технически правильные и экономически целесообразные инженерные решения.

В данной пояснительной записке изложено технология и организация строительства автомобильной дороги, строительство дорожных одежд, расположенной в Кировской области.{1}

1 Учет влияния природных факторов при проектировании автомобильной дороги

1.1 Краткая характеристика района проложения трассы

Самарская область расположена на востоке Восточно-Европейской равнины и западном склоне Среднего и Северного Урала. Площадь края составляет 120 800 км 2 . Максимальная протяженность края с севера на юг - 570 км, с запада на восток - 440км.
Самарская область граничит с пятью областями и двумя республиками Российской Федерации: на севере с республикой Коми, на западе - с Вологодской, Ярославской, Ивановской областью, на юге с Иошкар-Олой, на востоке - с Ижевской и Пермской областью.

1.2 Продолжительность теплого и холодного сезона

  1. Дата перехода температуры через 0 - 14 апреля, 14 октября
  2. Количество дней с отрицательной температурой - 180 дней
  3. Дата перехода температуры воздуха через +5 - 25апреля, 7 октября
  4. Количество дней с температурой выше +5 - 134 дней
  5. Дата перехода температуры через +10 - 12 мая, 11 сентября
  6. Среднегодовая температура воздуха по месяцам - 2,7

2 Характеристика строящегося участка автомобильной дороги.

В таблицу 1 выписываем геометрические параметры элементов дороги для категории, установленной заданием. Основание СНиП 2.05.02-85 «Автомобильные дороги», табл. 4.

В соответствии с принятой конструкцией дорожной одежды, заданной категории дороги, выданными рецептами асфальтобетонных смесей, и видами материалов для оснований рассчитываем потребность материалов на 1 км и на весь участок строительства.

Объемы каждого слоя основания и покрытия рассчитываем по формуле:

где: B - ширина слоя, м

h - толщина слоя, м

L - длина участка, м

Расчет ведем с точность до одного знака после запятой.

Массу асфальтобетонной смеси , необходимой для устройства верхнего и нижнего слоев покрытия рассчитываем по формуле:

где p средняя плотность в уплотненном состоянии т/м 3

Массу материала для устройства основания, рассчитываем по формуле:

где К п - коэффициент потерь К п = 1.03-1.05

К у - коэффициент запаса материала на уплотнение. К у =1.1

Результаты расчетов сводим в таблицу 2.

Таблица 2. Потребность в дорожно-строительных материалах.

Наименование конструктивного слоя

Наименование материала

Объем материала, м 3

Масса материала, т

На весь участок

На весь участок

Верхний слой покрытия

Щебеночно-мастичный асфальтобетон толщиной 4 см

В том числе:

Щебень фракции 5-10 22%

Щебень фракции 10-15 48%

Песок из отсевов дробления 13%

Минеральный порошок 11%

Битум БНД 60/90 6 %

Битум БНД 40/60 10%

Розлив битума

Нижний слой покрытия

Горячая мелкозернистая плотная а/б смесь тип В толщиной 5 см

В том числе:

Щебень фракции 5-20 35%

Песок из отсевов дробления 52%

Минеральный порошок

Розлив битума

Основание

Песчано-щебеночная смесь

Расчет производительности устройства основания из ПГС

р см - плотность неуплотненной смеси берем 1,25 т/м 3 ;

Таким образом,

за смену (8 часов) 8 х 8 64 т

37006,25/64 = 470,4 = 578 машиносмен

Так как в нашей дорожно-строительной организации имеется 24 автосамосвалов КамАЗ-6520, мы можем определить количество смен которое потребуется для того чтобы привезти 31992 м 3 ПГС

578/24=24,08=24 смены

Определяем коэффициент производительности автосамосвалов (через тонны):

24*64=1536 т в смену нужно привезти

Ксамосв = 1536/1536 = 1

Производительность автогрейдера

Назначаем автогрейдер - Caterpillar 16 М (приложение I), с шириной отвала 4,88 м. Это означает, что на основание шириной 19,1 м он покроет за 4 полосы (рис.4) . Примем скорость грейдерования (на 3 передаче) равной 8,8 км/ч = 146,7 м/мин, а количество проходов по одному следу - 6.

Посчитаем производительность автогрейдера по формуле:

V - скорость автогрейдера, м/мин;

А - количество полос укатки;

В - количество проходов по одному следу;

К в - коэффициент использования внутрисменного времени (К в =0,5)

Таким образом,

за 1 час (60 минут) 3,06 х 60 183,6 пог.м

за смену (8 часов) 183,6 х 8 1468,8 пог.м

за 1 минуту 3,06 х 19,1 58,45 м

за 1 час 58,45x60 3507 м 2

за смену 3507 х8 28056 м 2

Теперь, получив эти данные, определяем, какое время понадобится, чтобы полностью выполнить работы по устройству основания:

95500 / 28056 = 3,4 = 4 рабочих смены

Принимая автогрейдер за ведущий механизм при устройстве основания, определяем коэффициент его производительности (через квадратные метры): К грейд = 28056 /28056 = 1,0

Производительность катков

Процесс уплотнения

Определим марки катков для уплотнения основания, и рассчитаем необходимое их количество на каждом этапе уплотнения.

Согласно СНиП 3.06.03-85, пункт 7.5 уплотнение песчано-гравийной смеси ведетсяв 2 этапа - предварительный и основной. Соответственно, нужны 2 звена катков с разными массами.

Предварительное уплотнение

HAMM GRW 15

массой 11.7 т, с шириной вальца 2. м. Принимаем скорость движения катков 2 км/ч, необходимое количество проходов по одному следу - 7, количество катков - 10. При данной ширине вальца, принимаем количество полос (следов) укатки, с учетом перекрытия следа - 10 (рис. За).

L пог =2 х 10 /7/10 х 1000/60 = 4,76 м

4,76x60 = 285,6 м

Теперь в смену:

285,6х8 = 2284,8 м

В минуту уплотняем 4.76 х 2 = 9,52 м

В час 9.52х 60 =571,2 м 2

В смену 571,2 х 8 = 4569,6 м 2

Теперь, получив эти данные, определяем, какое время понадобится, чтобы полностью выполнить работы по основному уплотнению при устройстве основания:

95500 / 4569,6 = 21= 21 рабочих смен

Принимая катки за ведущий механизм при устройстве основания, определяем коэффициент его производительности (через квадратные метры):

К кат = 4569,6/4569,6 = 1,0

Основное уплотнение

HAMM HD140I +VO массой 12,9 тн, с шириной вальца 2,14 м. Принимаем скорость движения катков 5 км/ч, необходимое количество проходов по одному следу - 14, количество катков - 10. При данной ширине вальца, принимаем количество полос (следов) укатки, с учетом перекрытия следа - 10 (рис. 36).

L пог = V х А / В / С х 1000 / 60,

За 1 минуту: 4 х 10 / 14 / 10 х 1000 / 60 =4,76 пог.м.

за 1 час: 4,76 х 60 = 286 пог.м.

в смену: 286 х 8 = 2288 пог.м.

Пересчитаем полученные данные на квадратные метры:

За 1 минуту 4,76 х 2,14 =10,19 м 2

В час 10,19 x 60 = 611,4 м 2

В смену 611,4 х 8 = 4891 м 2

Определяем коэффициент его производительности (через квадратные метры):

К кат = 4569,6/4891 = 0,93

Производительность автоцистерны

Назначаем - автоцистерну для технической воды АЦТ-12 (приложение 1), вместимостью цистерны 12 т. Зная, что расстояние от АБЗ (там заливаем битум) до места производства работ в среднем 43 км, а средняя скорость движения - 60 км/ч, рассчитаем его производительность по формуле:

где Q гудр - вместимость автоцистерны, т;

Рассчитаем количество автоцистерн, для обеспечения подгрунтовки суточной захватки:

а) количество воды для увлажнения суточной захватки:

4548 х0,06 = 273 т

б) количество времени, необходимое для увлажнения суточной захватки:

273/7,5= 36,4 ч

Определим коэффициент производительности автогудронатора (через время): К 1СТ = 36,4 /8 = 4,55

Следовательно, 5 автоцистерн будет вполне достаточно.

Назначаем автогудронатор - ПМБ-7 (приложение 1), вместимостью цистерны 6 т. Зная, что расстояние от АБЗ (там заливаем битум) до места производства работ в среднем 43 км, а средняя скорость движения - 60 км/ч, рассчитаем его производительность по формуле:

L - расстояние от места наполнения цистерны до места производства работ, км;

V ср — скорость транспортировки материала, км/ч;

t Н - время наполнения цистерны, ч (= 0,15 ч);

t Р - время распределения материала, ч.

где р - норма розлива, м 3 /м 2 ;

b - ширина обрабатываемой полосы, м;

V р - рабочая скорость (скорость при распределении материала), км/ч.

4548 м 2 площадь суточной захватки

4548 х 0,00065 = 2,96 т

2,96/3,38=0,87 ч

Определим коэффициент производительности автогудронатора (через время): К 1СТ = 0,87/8 = 0,11

Расчет производительности укладки нижнего слоя асфальтобетонной смеси

Так как при заданной категории дороги (I-ой) имеются две проезжей части, с асфальтобетонным покрытием шириной 9,25 м, укладка асфальтобетона будет осуществляться в 4 прохода асфальтоукладчика.

Назначаем асфальтоукладчик - Vogele SUPER 1600-2 (приложение 1), имеющий возможность осуществлять укладку шириной 4,625 м. Примем скорость укладки равной 2,5 м/мин, исходя из СНиПа 3.06.03-85 при толщине нижнего слоя покрытия 0,05 м.

Таким образом,

В пересчете на квадратные метры это составит:

за 1 час 11,56x60 693,6 м 2

за смену 693,6x8 5548,8м 2

за 1 минуту 11,56х 0,05 0,578 м 3

за 1 час 0,578 х 60 34,68 м 3

за смену 34,68 х 8 277,4 м 3

Зная, что средняя плотность асфальтобетона в уплотненном состоянии равна 2,5 т/м 3 , определим, сколько тонн смеси необходимо выпустить асфальтобетонному заводу:

за 1 минуту 0,578 х 2,5 1,445 т

за 1 час 1,445 х 60 86,7 т

за смену 86,7х 8 693,6 т

К асф = 5548,8 /5548,8 = 1,0

Процесс уплотнения

Согласно СНиП 3.06.03-85, пункт 10.24 уплотнение плотных мелкозернистых а/б типа В ведется в 2 этапа - предварительный и основной. Соответственно, нужны 2 звена катков с разными массами.

Предварительное уплотнение

На предварительную укатку назначаем каток HAMM HD140I +VO

массой 12.7т, с шириной вальца 2.5 м. Принимаем скорость движения катков 2 км/ч, необходимое количество проходов по одному следу - 6, количество катков - 4. При данной ширине вальца, принимаем количество полос (следов) укатки, с учетом перекрытия следа - 4 (рис. За).

Рассчитаем количество погонных метров, уплотняемых данным звеном за 1 минуту. Формула для расчета:

L пог = V х А / В / С х 1000 / 60, ()

где V - скорость катков при уплотнении, км/ч;

А - количество катков в звене;

В - количество проходов катка по одному следу;

С — число следов (полос) укатки;

1000 - коэффициент, для перевода в размерность «м/час»;

60 - коэффициент, для перевода в размерность «м/мин».

L пог =2 х 4 /6/4 х 1000/60 = 5,6м

5,6x60 = 333,6 м

Теперь в смену:

333,6х8 = 2666,7 м

Пересчитаем полученные данные на квадратные метры:

В минуту уплотняем 5,6 х 2.14 = 11,98 м

В час 11,98 х 60 = 719 м 2

В смену 719 х 8 - 5752 м 2

Сравним полученные результаты с производительностью асфальтоукладчика:

Асфальтоукладчик укладывает за смену 5548,8 м 2 смеси.

Звено катков №1 - может уплотнить за то же время 5752м 2 асфальтобетона.

Видим, что производительность катков выше, чем производительность

асфальтоукладчика. Принимаем данную схему как рабочую.

Определяем коэффициент производительности катков на предварительном уплотнении:

Ккат.предв = 5548,8 / 5752= 0,96

Основное уплотнение

На основную укатку нижнего слоя назначаем звено гладковальцовых катков HAMM HD140I +VO массой 12,9 тн, с шириной вальца 2,5 м. Принимаем скорость движения катков 3 км/ч, необходимое количество проходов по одному следу - 8, количество катков - 4. При данной ширине вальца, принимаем количество полос (следов) укатки, с учетом перекрытия следа - 4 (рис. 36).

Проводим расчеты производительности этого звена катков.

За 1 минуту: 3 х 2 / 8 / 2 х 1000 / 60 =6,25 пог.м.

за 1 час: 6,25 х 60 = 375 пог.м.

в смену: 375 х 8 = 3000 пог.м.

Пересчитаем полученные данные на квадратные метры:

За 1 минуту 6,25 х 2,14 =13,38 м 2

В час 13,38 x 60 = 802,5м 2

В смену 802,5 х 8 - 6420 м 2

Сравниваем результаты и убеждаемся, что звено катков назначено правильно. Принимаем данную схему укатки.

Определяем коэффициент производительности катков на основном уплотнении:

К К ат.осн =5548,8 /6420 = 0,86

Производительность автосамосвала

Назначаем автосамосвал - КамАЗ-6520 (приложение 1), вместимостью кузова 12 м 3 . Зная, что расстояние от АБЗ до места производства работ в среднем 43 км, а средняя скорость движения - 55 км/ч, рассчитаем его производительность по формуле:

Объем кузова самосвала, м 3 ;

р см - плотность неуплотненной смеси берем 2,35 т/м 3 ;

L - расстояние от АБЗ до места производства работ;

V ср - средняя скорость движения самосвала, км/ч;

0,32 - суммарное время погрузки и разгрузки самосвала, ч.

Таким образом,

за смену (8 часов) 15 х 8 120 т

Рассчитаем необходимое количество машиносмен:

11563/120 = 96,3 = 97 машиносмен

Определяем коэффициент производительности автосамосвалов (через тонны): Ксамосв = 693,6 /(120x6) = 0,96

Производительность автогудронатора

Назначаем автогудронатор - ПМБ-7 (приложение 1), вместимостью цистерны 6 т. Зная, что расстояние от АБЗ (там заливаем битум) до места производства работ в среднем 40 км, а средняя скорость движения - 60 км/ч, рассчитаем его производительность по формуле:

где Q гудр - вместимость автогудронатора, т;

L - расстояние от места наполнения цистерны до места производства работ, км;

V ср — скорость транспортировки материала, км/ч;

t Н - время наполнения цистерны, ч (= 0,15 ч);

t Р - время распределения материала, ч.

где р - норма розлива, м 3 /м 2 ;

b - ширина обрабатываемой полосы, м;

V р - рабочая скорость (скорость при распределении материала), км/ч.

Рассчитаем количество гудронаторов, для обеспечения подгрунтовки суточной захватки:

а) количество битума для подгрунтовки суточной захватки:

5000*18,5/17= 5441м 2 площадь суточной захватки

5441 х 0,0003 = 1,63

б) количество времени, необходимое для подгрунтовки суточной захватки:

1,63 /3 =0,54 ч

Определим коэффициент производительности автогудронатора (через время): К 1СТ = 0,54/8 = 0,07

Следовательно, одного автогудронатора будет вполне достаточно.

Расчет производительности укладки верхнего слоя асфальтобетонной смеси

Сразу оговоримся, что все расчеты производятся без учета технологических перерывов, так, будто техника работает постоянно, ритмично, и с максимальной эффективностью.

Так как при заданной категории дороги (III-ей) имеются одна проезжая часть, с асфальтобетонным покрытием шириной 8 м, укладка асфальтобетона будет осуществляться в два прохода асфальтоукладчика.

Производительность асфальтоукладчика

Назначаем асфальтоукладчик - Vogele SUPER 1600-2 (приложение 1), имеющий возможность осуществлять укладку шириной 4,625 м. Примем скорость укладки равной 2,5 м/мин, исходя из СНиПа 3.06.03-85 при толщине верхнего слоя покрытия 0,04 м.

Таким образом,

за 1 минуту мы уложим 2,5 погонных метра смеси

за 1 час (60 минут) 2,5x60 150пог.м

за смену (8 часов) 150 х 8 1200 пог.м

В пересчете на квадратные метры это составит:

за 1 минуту 2.5x4,625 11,56 м 2

за 1 час 11,56x60 693,6 м 2

за смену 693,6x8 5548,8м 2

При этом, в пересчете на кубические метры это составит:

за 1 минуту 11,56х 0,04 0,462 м 3

за 1 час 0,462 х 60 27,72 м 3

за смену 27,72 х 8 221,76 м 3

Зная, что средняя плотность асфальтобетона в уплотненном состоянии равна 2,65 т/м 3 , определим, сколько тонн смеси необходимо выпустить асфальтобетонному заводу:

за 1 минуту 0,462 х 2,65 1,22 т

за 1 час 1,22 х 60 73,2 т

за смену 73,2 х 8 585,6 т

Теперь, получив эти данные определяем, какое время понадобится, чтобы полностью выполнить работы по устройству нижнего слоя покрытия:

92500 / 5548,8 = 16,7 ̴ 17 рабочих смен

Принимая асфальтоукладчик за ведущий механизм, определяем коэффициент его производительности (через квадратные метры):

К асф = 5548,8 /5548,8 = 1,0

Процесс уплотнения

Определим марки катков для уплотнения смеси, и рассчитаем необходимое их количество на каждом этапе уплотнения. Количество катков в звене и скорость их движения принимаем таким образом, чтобы площадь асфальтобетона, уплотняемая ими, была больше или чуть меньше (около минус 10%) от площади, уложенной за тоже время асфальтоукладчиком.

Согласно СНиП 3.06.03-85, пункт 10.24 уплотнение щебеночно-мастичных а/б смесей ведется в 2 этапа - предварительный и основной. Соответственно, нужны 2 звена катков с разными массами.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ

ФЕДЕРАЦИИ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ

АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ

КАФЕДРА ТРАНСПОРТА И ДОРОЖНОГО СТРОИТЕЛЬСТВА

Б.А.Кошелев

Д.В.Демидов

С.А.Пашкин

ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ

СТРОИТЕЛЬСТВА

АВТОМОБИЛЬНЫХ ДОРОГ

ПОДГОТОВКА ДОРОЖНОЙ ПОЛОСЫ.

УСТРОЙСТВО ИСКУССТВЕННЫХ СООРУЖЕНИЙ.

ВОЗВЕДЕНИЕ ЗЕМЛЯНОГО ПОЛОТНА

Методические указания для студентов

специальности 291000 «Автомобильные дороги и аэродромы»

очной и заочной форм обучения

ЕКАТЕРИНБУРГ

2001

Методические указания предназначены для студентов специальности 291000 «Автомобильные дороги и аэродромы» очной и заочной форм обучения для курсового и дипломного проектирования. В первую часть включены технологические расчеты по подготовке дорожной полосы, устройству искусственных сооружений и возведению земляного полотна автомобильной дороги.

Рецензент - канд. техн. наук, профессор С.И.Булдаков

Редактор Ленская А.Л.

Подписано в печать Формат 60 ? 84 1 / 16

Плоская печать Печ. л. 2,79 Тираж 100 экз.

Поз. 5 Заказ Цена 9 руб. 60 коп.

Редакционно-издательский отдел УГЛТУ

Отдел оперативной полиграфии УГЛТУ

ВВЕДЕНИЕ

Целью методических указаний является оказание помощи студентам очной и заочной форм обучения специальности 291000 «Авто-мобильные дороги и аэродромы» в выполнении курсового проекта по дисциплине «Технология и организация строительства автомобильных дорог» и подготовке дипломного проекта строительства автомобильной дороги.

В настоящих методических указаниях приводятся последовательность и методика выполнения курсового проекта.

1. ПОРЯДОК ВЫПОЛНЕНИЯ ПРОЕКТА

Курсовой и дипломный проекты должны быть максимально приближены к уровню выполнения проекта производства работ (ППР) согласно СНиП 3.01.01-85 применительно к конкретным условиям деятельности дорожно-строительных организаций. В целом проект на строительство автомобильной дороги охватывает два основных раздела: возведение земляного полотна с подготовкой дорожной полосы и устройством искусственных сооружений , устройство дорожной одежды с обустройством дороги.

Исходными данными для выполнения ППР, а, следовательно, и курсового проекта являются:

Общие сведения о природно-климатических и грунтово- геологических условиях строительства;

Рабочие чертежи (продольный профиль автомобильной дороги, план трассы в горизонталях, ведомость объемов земляных работ);

Сведения о размещении резервов и карьеров, а также качестве местных строительных материалов (паспорта карьеров, сертификаты материалов);

Сведения об источниках получения привозных строительных материалов (битумов, железобетонных изделий и т.д.);

Сведения о количестве и типах дорожно-строительных машин, имеющихся на балансе в дорожно-строительных организациях.

Для выполнения реального проекта целесообразно в период производственной практики собрать сведения по применяемым или разрабатываемым новым технологиям выполнения дорожно-строительных работ, современным материалам и машинам, в первую очередь, иностранных производителей. В качестве исходных данных могут быть использованы также материалы ранее выполненного курсового проекта по дисциплине «Изыскания и проектирование автомобильных дорог».

Расчетно-пояснительная записка состоит из введения и семи разделов. Во введении следует отразить значение строительства автомобильных дорог, а также основные направления технического прогресса в организации и механизации дорожно-строительных работ. Содержание других разделов проекта приведено в настоящих методических указаниях.

По мере выполнения расчетов и графических работ пояснительную записку рекомендуется оформлять начисто, предъявляя выполненные разделы преподавателю для проверки на очередном контроле или консультации. Оформление курсового проекта выполняется на основании ГОСТ 2.105-79 .

2. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА АВТОМОБИЛЬНОЙ

ДОРОГИ

2.1. Технико-экономическая характеристика района строительства

автомобильной дороги

В разделе даются краткие сведения об экономическом развитии района строительства дороги и расположении основных транспортных путей с указанием вида транспорта и категорий дорог. На основе экономико-транспортных связей приводятся данные о грузо- и пассажироперевозках, обосновывается категория автомобильной дороги и ее назначение. Кроме того, приводится характеристика организации, строящей дорогу.

Исходя из требований СНиП 2.05.02-85 , производится анализ плана и профиля, приводятся технические показатели дороги (табл. 1).

Таблица 1

Описываются рельеф и грунты на трассе, определяются тип местности по увлажнению, карьеры местных строительных материалов. Указывается пригодность материалов для строительства дороги.

2.2. Климатическая характеристика района строительства дороги

На основе СНиП 23-01-99 приводятся климатические показатели района строительства автомобильной дороги и составляется дорожно-климатический график (рис. 1). График необходим для назначения сроков производства дорожно-строительных работ в интервалах между весенней и осенней распутицами.

Рис. 1. Дорожно-климатический график

2.3. Выбор метода организации работ и расчет

основных его параметров

2.3.1. Обоснование принятого метода организации работ

Весь комплекс дорожно-строительных работ подразделяется на линейные и сосредоточенные. Линейные работы относительно равномерно распределены по всей трассе. Сосредоточенные работы характеризуются большими объемами и неравномерным расположением их по длине трассы. К ним относят земляные работы с объемом на 1 км, превышающим средний объем земляных работ на дороге в 3 раза и более, а также устройство средних и больших мостов, тоннелей, производственных предприятий, пересечений в разных уровнях, комплексов дорожной и автотранспортной служб.

Главный метод организации работ по строительству автомобильной дороги - поточный, основой которого является комплексный поток, где выполнение линейных и сосредоточенных работ по трассе должно быть увязано во времени и в пространстве с таким расчетом, чтобы линейные работы выполнялись без перерывов, т.е. выполнение сосредоточенных работ должно опережать выполнение линейных работ.

При этом методе все виды работ выполняются специализированными механизированными подразделениями, перемещающимися по трассе в строгой технологической последовательности, как правило, с одинаковой скоростью перемещения. В равные промежутки времени (смена, день) заканчивается строительство равных по длине участков автомобильной дороги.

Специализированные потоки включают в себя несколько частных потоков, например, при устройстве дорожной одежды частные потоки будут предназначены для устройства конструктивных слоев дорожной одежды.

Каждый частный поток состоит из отдельных участков, на которых специализированные звенья выполняют определенные рабочие операции. Такие участки называются захватками. Длину захватки, как правило, принимают равной сменной производительности потока; иногда захватки бывают двух-, трех- или четырехсменными.

Между частными и специализированными потоками, а иногда и между отдельными захватками устраивают разрывы (технологические, организационные), измеряемые количеством смен.

В зависимости от характера и объемов строительных работ рекомендуется работы по строительству дороги назначать в следующей последователь-ности: в зимний период прорубку просеки вы-полняет специализированная комплексная бригада, основные работы производятся комплекс-ным потоком, в составе которого отдельные его звенья выполняют линей-ные и сосредоточенные работы:

Линейные работы по подготовке дорожной полосы (восстановление трассы, очистка трассы от камней, кустарника, спиливание и корчевка пней, снятие растительного слоя);

Сосредоточенные работы по устройству искусственных сооружений;

Сосредоточенные земляные работы в местах устройства искусственных со-оружений, высоких насыпей и глубоких выемок;

Линейные земляные работы по возведению земляного полотна из привозно-го грунта, рекультивация нарушенных земель;

Линейное устройство дорожной одежды отдельными звеньями по укладке конструктивных слоев;

Обустройство дороги в составе комплексного потока.

При устройстве насыпи на болотах и других слабых грунтах земляные работы могут быть назначены в зимний период.

С целью максимального использования светового дня целесообразно принять следующую сменность работ: прорубку просеки и устройство искусственных сооружений – в 1 смену, остальные работы – в 2 смены.

2.3.2.

Календарные сроки продолжительности строительного сезона устанавливаются на основе средних многолетних данных СНиП 1.04.03-85 (Приложение 1). Следует отметить одну закономерность, связанную с началом строительного сезона. Вне зависимости от вида работ дата начала сезона в одной какой-либо области одна и та же, что объясняется фактором проезжаемости колесных машин и отсутствием прилипания грунта к рабочим органам дорожно-строительных машин. Даты окончания строительного сезона для отдельных видов дорожно-строительных работ различны из-за неодинаковых технологических свойств применяемых дорожно-строительных материалов.

Начало основных работ назначается на конец весенней распутицы, а их оконча-ние - на начало осенней распутицы.

При отсутствии данных даты начала весенней распутицы Z н и ее окончания Z к определяются по формулам :

Z н = Т о + 5 / a ; (1)

Z к = Z н + (0,7 h пр / a), (2)

где Т о – дата перехода температуры воздуха через 0 о С;

a - климатический коэффициент, характеризующий скорость оттаивания грунта, м / сутки (для Курганской области a = 6, для Пермской области a = 4,5, для Свердловской области a = 4, для Челябинской области a = 3,5);

h пр – максимальная глубина промерзания грунта в районе строительства, см (для Курганской области h пр = 200 см, для Пермской области h пр = 180 см, для Свердловской области h пр = 190 см, для Челябинской области h пр = 180 см).

Количество рабочих смен в строительном сезоне

Т см = К см (Т к – Т вых – Т ат - Т тех ), (3)

где К см – коэффициент сменности (во II К см = 1,85, для Сибири К см = 2,0);

Т к – календарная продолжительность строительного сезона, дни;

Т вых - число выходных и праздничных дней, приходящихся на период календарной продолжительности сезона (определяется по календарю);

Т ат – число нерабочих дней по метеорологическим условиям, приходящихся на период календарной продолжительности сезона (см. Приложение 1);

Т тех – простои по техническим причинам (ремонт, профилактика машин, организационные и технологические причины), дни; во II дорожно-климатической зоне для Европейской части Т тех = 17 дней, для Сибири Т тех = 12 дней с уменьшением пропорционально соотношению проектной и нормативной протяженности дороги 11 км.

Для определения календарной продолжительности производства дорожно-строительных работ вводится коэффициент перевода рабочих дней в календарные:

К = Т к / Т р, (4)

где Т р – количество рабочих дней производства дорожных работ.

2.3.3. Определение темпа потока

Длина участка готовой дороги, построенной за одну смену, называется темпом потока, или скоростью комплексного потока (м / смену):

V = L / (Т см – N р ), (5)

где L – длина участка строящейся дороги, м;

N р – период развертывания комплексного потока, смены.

Значение длины захватки после округления в большую сторону должно быть кратным 25.

Период развертывания комплексного потока N р определяют в зависимости от видов и объемов работ, которые будут выполняться при строительстве автомобильной дороги. При этом необходимо обеспечить организационные и технологические разрывы (одна - две смены) между работой отдельных отрядов (звеньев). Иногда эти разрывы достигают двух - трех недель, необходимых для формирования конструктивных слоев дорожной одежды (для цементобетонного покрытия 21 - 28 календарных дней).

Для определения времени работы звеньев по устройству конструктивных слоев дорожной одежды и размера разрывов между их работой рекомендуется использовать ориентировочные данные (табл. 2).

Таблица 2

Вид работы звеньев по устройству конструктивных слоев дорожной одежды

Количество смен работы звена

Разрывы в звеньях, смены

1.Устройство однослойного песчаного или гравийного основания

2.Устройство оснований из укрепленного грунта или укрепленной песчано-гравийной (грунто-щебеночной) смеси

3.Устройство основания из фракционированного щебня

4.Устройство покрытия из фракционированного щебня

5.Устройство однослойного основания из фракционированного щебня методом пропитки битумом

6.Устройство однослойного покрытия из фракционированного щебня методом пропитки битумом

7.Устройство основания из черного щебня

8.Устройство покрытия из черного щебня

9.Устройство покрытия из асфальтобетонной смеси

10.Устройство одиночной поверхностной обработки

11.Устройство двойной поверхностной обработки

12.Устройство однослойного цементобетонного основания

13.Устройство цементобетонного покрытия

14.Устройство присыпных обочин и выполнение укрепительных работ на обочинах

15.То же на дорогах I категории с выполнением работ по устройству разделительной полосы

16.Планировка откосов и горизонтальных площадей земляного полотна и резервов, а также распределение растительного грунта по этим площадям. Ликвидация временных съездов

17.Обстановка пути

Необходимое количество смен (захваток) работы отряда по возведению насыпи в комплексном потоке зависит от количества слоев возводимой насыпи. Каждый слой насыпи будет возводиться на двух захватках: на первой производится разработка грунта из боковых резервов с перемещением в насыпь (подвозка из сосредоточенного резерва) и разравнивание, на второй – послойное уплотнение грунта.

С учетом срезки растительного грунта в пределах полосы отвода с уплотнением поверхности земли в пределах насыпи (одна захватка), а также выполнения отделочных работ (одна захватка) общее количество захваток (смен) для возведения насыпи будет при двухслойной насыпи – 6, при трехслойной насыпи – 8, при четырехслойной – 10 и т.д.

Учитывая неравномерность объемов земляных работ на трассе, разрыв в работе отряда по выполнению линейных земляных работ и следующего звена может быть принят в две - четыре смены.

Вследствие того, что искусственные сооружения фактически являются сосредоточенными объектами, их тип и размеры колеблются в больших пределах. Разрыв между их устройством и началом работ по возведению земляного полотна может составлять две - четыре смены.

Целесообразно устройство малых искусственных сооружений или их части проводить заблаговременно в осенне-зимний период. При этом создается задел, позволяющий в начале строительного сезона сразу приступать к выполнению земляных работ. В данном случае при расчете периода развертывания комплексного потока время на устройство искусственных сооружений не должно учитываться.

Пользуясь рекомендациями о количестве смен (захваток) работы звеньев по устройству конструктивных слоев дорожной одежды и приведенными выше данными по строительству малых искусственных сооружений и возведению земляного полотна, определяем период развертывания потока:

N р = S t + S n , (6)

где S n – организационно-технологические разрывы между работой звеньев (отрядов), смены (захватки);

S t – устройство малых искусственных сооружений, выполнение линейных земляных работ, устройство конструктивных слоев дорожной одежды, смены (захватки),

S t = t 1 + t 2 + t 3 + t 4 + t 5 + t 6 . (7)

Здесь t 1 - устройство первого в потоке малого искусственного сооружения, смены;

t 2 – возведение насыпи, смены;

t 3 – устройство подстилающего слоя, смены;

t 4 – устройство основания, смены;

t 5 – устройство нижнего слоя покрытия, смены;

t 6 – устройство верхнего слоя покрытия (с поверхностной обработкой, если устраивается), смены.

При применении специализированных машин необходимо увязывать длину захватки с производительностью этих машин. Так, при применении автогудронаторов, поливомоечных машин и распределителей дорожно-строительных материалов длина захватки увеличивается по сравнению с расчетной, при укладке железобетонных плит скорость потока, наоборот, уменьшается.

3. ПОДГОТОВКА ДОРОЖНОЙ ПОЛОСЫ

Сооружению земляного полотна предшествуют подготовительные работы, в состав которых входят восстановление и закрепление трассы, прорубка просеки, очистка дорожной полосы от пней, кустарника и крупных камней, снятие и складирование растительного слоя в пределах полос временного отвода, разбивка земляного полотна, устройство временных дорог, устройство осушительных и водоотводных канав, снос, переустройство и перенос сооружений в зоне работ.

3.1. Восстановление и закрепление трассы

В подразделе указывается состав работ на восстановление и закрепление трассы и приводятся схемы закрепления трассы. При прокладке дороги назначается полоса отвода земли при обязательном разделе на постоянный отвод под земляное полот-но с земляными сооружениями и временный отвод для размещения притрассовых и сосредоточенных резервов, полос для складирования плодородного слоя (табл.3 «Ведомость отвода земель»).

Таблица 3

Наименование земель

Местоположение участка

Протяженность, м

Ширина отвода земель, м

зе-мель, га

Постоянный отвод

Временный отвод

Постоянный отвод

Временный отвод

Сосредоточенный резерв

Справа 150 м ПК 3+00 строящейся дороги

Автодорога

Итого отвод земель

Нормы постоянного отвода земель для автомобильных дорог устанавливаются по требованиям СН 467-74 (табл. 4).

Таблица 4

Высота насыпи, м

Ширина полос отвода земель для автомобильных дорог на равнинной местности с поперечными уклонами от 0 до 90 ‰ с постоянным заложением откосов земляного полотна, м

Примечание. В числителе приведена ширина постоянной полосы отвода земель при высоте насыпей до 2 м и отсутствии боковых резервов, в знаменателе – с учетом устройства боковых резервов, если они являются постоянным конструктивным элементом земляного полотна (при низкой стоимости земли и отсутствии рекультивационных работ).

3.2. Прорубка просеки

Комплекс работ по прорубке просеки предусматривает подготовку лесосеки (просеки), валку ле-са, обрубку, сбор и сжигание сучьев, трелевку хлыстов к временным складам. Удаление леса или кустарника вместе с плодородным слоем почвы не допускается.

Объем работ по прорубке просеки рассчитывается на основании характеристики лесонасаждений (табл. 5 «Ведомость объемов работ по площади вырубки», табл. 6 «Ведомость объемов работ по прорубке просеки»).

Таблица 5

Местоположение участка

Длина участка, м

Ширина просеки, м

Площадь рубки леса, га

Средней густоты

Средней густоты

Средней густоты

Прорубку просеки назначают в зимний период по нескольким при-чинам: лучшее качество заготовленной древесины, облегчен проезд по дорогам, освобождение рабочего времени для основного комплекса строительных ра-бот, обеспечение просушки очищенной от леса трассы.

Таблица 6

Объем ликвидной древесины и среднее количество деревьев на 1 га приведены в табл.7 .

Все работы по прорубке просеки выполняются малыми комплексными бригадами, количество которых в сводной бригаде зависит от характеристики лесонасаждений и объемов работ:

N = ТЗ / Т р n , (8)

где ТЗ – трудозатраты на прорубке просеки, чел.-дн.;

Т р – количество рабочих дней на прорубке просеки;

n – количество человек в бригаде (при работе с трактором ТДТ-55 – 5 человек, при работе с трактором ТТ-4 – 6 человек).

Таблица 7

Потребность в рабочей силе и в машино-сменах на прорубке просеки определя-ется по формуле:

N i = V i Н вр, (9)

где V i – объем древесины данной характеристики, м 3 ;

Н вр – нормы времени использования машин, машино-смены / ед. изм. Для определения норм времени целесообразно использовать сборники , . Для ориентировочных расчетов можно использовать данные табл. 8 «Нормативные показатели на 1000 м 3 древесины» .

Таблица 8

Примечания. 1. В числителе приведены показатели для бригад, работающих с трактором ТДТ-55, в знаменателе – для бригад, использующих трактор ТТ-4. 2. К приведенным нормам применяют поправочные коэффициенты: при работе в елово-пихтовых насаждениях 1 / 0,95, в сосновых и мягколиственных 1 / 1,1.

Потребность машино-смен и человеко-дней на прорубке просеки определяется в форме табл. 9.

Таблица 9

Для машин и механизмов, работающих на прорубке просеки, устанавливаются нормы на резерв (табл.10).

Таблица 10
Пример определения потребности машин приведен в табл.11.
Таблица 11

Календарную продолжительность работ по прорубке просеки определяют по формуле:

Т к = Т р К . (10)

3.3. Очистка дорожной полосы от пней, кустарника и снятие

растительного слоя

Работы по подготовке дорожной полосы включают в се-бя корчевку пней или спиливание их вровень с землей, срезку кустарника и мелколесья с уборкой валежника, снятие растительного слоя, разбивочные работы.

Корчевку пней назначают преимущественно в летний период, поскольку при мерзлых грунтах процесс корчевки менее эффективен. Корчевку пней выполняют на участках устройства канав и выемок. Пни допускается оставлять в основании земляного полотна при облегченных, переходных и низших типах покрытий на дорогах III - V технических категорий при насыпях более 1,5 м, а также в случаях, когда проектом не предусмотрена полная расчистка дорожной полосы (на болотах, неустойчивых склонах и т.д.). При насыпях от 1,5 до 2,0 м пни должны быть срезаны вровень с землей, а при насыпи более 2 м – на высоте 10 см от земли.

3.3.1.Составление ведомости объемов работ для подготовки

дорожной полосы

Объемы работ определяют по типовым поперечным профилям характерных участков дороги по упрощенным формулам:

а) ширина канавы b к

b к = b + 2 m h к , (11)

б) площадь канавы F к

F к = b h к + m h к 2 , (12)

в) ширина подошвы насыпи В под

В под = В + 2 m Н н, (13)

г) ширина резерва поверху b р для одностороннего резерва

b р = + 2 m h р , (14)

д) ширина резерва поверху b р для двухстороннего резерва

b р = + 2 m h р , (15)

е) ширина резерва b р для одностороннего резерва и канавы

b р = (- F к ) + 2 m h р , (16)

ж) ширина выемки поверху b в

b в = В + 2 b + 2 m h к + 2 n (Н в + h к ) , (17)

где b – ширина канавы (кювета) понизу, м;

h к – глубина канавы (кювета), м;

В - ширина земляного полотна поверху, м;

Н н - средняя рабочая отметка насыпи, м;

h р - средняя глубина резерва, м;

L – длина участка (пикета), м;

V н - объем земляных работ на данном участке (пикете), м 3 ;

Н в – средняя глубина выемки на данном участке (пикете), м;

m – заложение откосов насыпи, резерва или канавы;

n – внешнее заложение откоса выемки.

Так как средняя плотность грунта в естественном состоянии менее плотности грунта в насыпи, то требуемые объемы грунта для возведения насыпей из боковых резервов находят путем умножения профильных объемов V н на коэффициент относительного уплотнения (коэффициент переуплотнения) K :

K = ? н / ? е, (18)

где ? н – плотность грунта в построенной насыпи;

? е – плотность грунта в естественном залегании (для песка ? е = 1,71 г / cм 3 ; для супесей легких и тяжелых, суглинка легкого ? е = 1,64 г / cм 3 ; для тяжелого суглинка ? е = 1,60 г / cм 3).

Плотность грунта в построенной насыпи теоретически вычисляют по формуле:

? н = К опт, (19)

где К опт – коэффициент оптимального уплотнения (во II дорожно-климатической зоне для дорог I и II технических категорий К опт = 1,00 - 0,98, для дорог III-V технических категорий К опт = 0,98 - 0,95);

? – плотность скелета грунта (табл.12);

V – массовая доля воздуха, % (табл. 12);

W – массовая доля оптимальной влажности, % (табл. 12).

Таблица 12

Объемы работ по корчевке пней F к , спиливанию пней F с и снятию раститель-ного слоя V p определяют по формулам:

F к = В уч.к L уч.к , (20)

F с = В уч.с L уч.с , (21)

V р = В уч.р L уч.р ? , (22)

где В уч.к, В уч.с, В уч.р – соответственно ширина участка корчевки, спиливания пней и снятия растительного слоя, м;

L уч.к , L уч.с , L уч.р – соответственно длина участков корчевки, спиливания пней и снятия растительного слоя, м;

? – толщина растительного слоя, м.

Объемы работ по подготовке дорожной полосы определяются в форме табл. 13.

Таблица 13

Расположение участка

Протяженность участка, м

Ширина, м

Средняя толщина

расти-тельного слоя, м

Объем работ

сня-тия растительного слоя, м 3

Начало ПК+

Конец ПК+

корчевки пней, га

спиливания пней, га

Итого

3.3.2. Определение трудозатрат, количества машино-смен и выбор комплекта машин для подготовки дорожной полосы

Обычно корчевку пней производят корчевателями. Для снятия растительного грунта используют бульдозеры и реже скреперы и автогрейдеры. Во всех случаях машина выбирается так, чтобы она была максимально загружена. Если это невозможно, следует предусматривать ее использование на других работах.

Корчевку пней и снятие растительного слоя целесообразно включать в специализированный поток возведения земляного полотна, а бульдозер, кроме этих работ, можно использовать для рыхления грунта (при наличии рыхлительного агрегата), разработки грунта в боковых резервах и перемещения его в насыпь, разравнивания грунта.

Для определения трудозатрат и потребности машино-смен на подготовке дорожной полосы составляется ведомость при использовании сборников - по форме табл.14.

Таблица 14

Количество машино-смен на длину захватки

N м = N V / L , (23)

где N м – потребность в машино-сменах на всю длину дороги;

V – длина захватки, м;

L – длина строящегося участка дороги, м.

На основании расчетов назначается состав бригады на подготовке дорожной полосы, определяются количество рабочих и календарная продолжительность работ.

4. СТРОИТЕЛЬСТВО ИСКУССТВЕННЫХ СООРУЖЕНИЙ

Крупные и средние мосты, а также крупные многоочковые трубы являются сосредоточенными объектами. Их возводят в течение всего строительного периода, но при условии окончания работ к моменту подхода к ним частного потока по выполнению линейных работ.

Малые мосты из сборных железобетонных конструкций, а также круглые, овоидальные и прямоугольные железобетонные трубы, являющиеся фактически тоже сосредоточенными объектами, но требующие сравнительно небольшого количества времени для их устройства, строят в потоке, опережая выполнение линейных земляных работ.

4.1. Составление ведомости искусственных сооружений

Исходя из данных продольного профиля автомобильной дороги, составляется ведомость искусственных сооружений (табл.15). Для труб указываются размеры отверстия и длина трубы, для мостов – строительная длина и ширина моста.

Таблица 15

Местонахождение сооружения

Наименование искусственного

со-оружения

Основные размеры, м

на-сыпи, м

Примечание

Длину трубы определяют по упрощенной формуле:

L тр = В з.п + 2 m (Н нас – d - d ) , (24)

где В з.п - ширина земляного полотна поверху, м;

Н нас - высота насыпи, м;

d - диаметр трубы, м;

m - коэффициент заложения откосов земляного полотна;

d - толщина стенки трубы, м (можно принять равной 0,15 м).

Расчетную длину трубы округляют до целого числа, кратного длине звена.

4.2. Определение состава бригады для строительства искусственных сооружений

В подразделе приводится краткое описание технологии строительства малых мостов и труб с учетом требований СНиП 3.06.04-91 . Составляется ведомость определения трудозатрат на строительство искусственных сооружений (табл.16). При устройстве сборных круглых и прямоугольных, монолитных прямоугольных труб, мостов используется сборник , при устройстве металлических гофрированных труб - сборник .

Для ориентировочных расчетов можно использовать данные по количеству отрядо-смен на устройство круглых труб (табл. 17) .

Таблица 16

Таблица 17

Количество рабочих дней определяется делением общей трудоемкости работ на численный состав бригады.

Для строительства круглых и овоидальных железобетонных труб принимается следующий состав специализированного отряда: автомобильный кран КС-2561 - 1 шт., бульдозер ДЗ-109 - 1 шт., самоходный пневмоколесный каток ДУ-31А - 1 шт., электростанция ПЭС-12М - 1 шт., электровибраторы ИВ-101, ИВ-47Б, ИВ-113 - по 1 шт., битумный котел вместимостью 400 л - 1 шт.

Рабочая сила на одну смену: машинисты и мотористы - 4 чел., дорожные рабочие - 6 чел.

При строительстве труб с отверстием 2 м автомобильный кран КС-2561 должен быть заменен более мощным КС-3562А.

Расчетные пролеты или полную длину пролетных строений автодорожных мостов по СНиП 2.05.03-84 требуется назначать равными 3, 6, 9, 12, 15, 18, 21, 24, 33 и 42 м. Он же классифицирует автодорожные мосты: при полной длине до 25 м - малые, от 25 до 100 м – средние, более 100 м – большие.

При строительстве сборных железобетонных малых и средних мостов на свайных опорах при длине пролетов 12, 15, 18, 21 и 24 м рекомендуется принимать следующий состав отряда: стреловой самоходный кран КС-4362 - 1 шт., автомобильный кран КС-4561 - 1 шт., копровая установка с дизель-молотом СП-6А - 1шт., лебедки приводные грузо-подъемностью 2,5 т - 2 шт., тележки грузоподъемностью 25 т - 2шт., электросварочный аппарат - 1шт., электровибраторы ИВ-113 - 2 шт., передвижная электростанция ЭСД-50-Т - 1 шт., компрессор ЗИФ-5ВКС - 1 шт.

Рабочая сила на одну смену: машинисты и мотористы - 12 чел., монтажники - 8 чел.

Производительность этого отряда по строительству железобетонных автодорожных мостов зависит от категории автомобильной дороги: для I категории – 0,34 м / смена; II – 0,62; III – 0,70; IV - 0,80 м / смена.

По окончании раздела определяется календарная продолжительность выполнения работ по устройству искусственных сооружений.

5. ВОЗВЕДЕНИЕ ЗЕМЛЯНОГО ПОЛОТНА

Сооружение земляного полотна автомобильной дороги осуществляется комплексно-механизированным способом с применением средств механизации в зависимости от принятой технологии и установленных сроков выполнения работ.

5.1. Разбивка на местности земляного полотна и

водоотводных сооружений

В разделе описывается состав работ на разбивке земляного полотна и водоотводных сооружений, приводятся схемы разбивки для характерных поперечных профилей земляного полотна.

5.2. Выбор грунтов для отсыпки земляного полотна

Грунты, используемые для возведения насыпей, разделяют на четыре основные группы: скальные, добываемые путем разрушения естественных сплошных или трещиноватых скальных массивов, крупнообломочные, залегающие в естественных условиях, песчаные и глинистые.

Для насыпей применяют грунты, состояние которых под действием природных факторов не изменяется или изменяется незначительно, что не влияет на их прочность и устойчивость в земляном полотне. К таким грунтам относят скальные и крупнообломочные грунты, песчаные (кроме мелких и пылеватых), супеси легкие и крупные.

Непригодны для возведения насыпи следующие грунты: глинистые избыточно засоленные, глинистые, влажность которых выше допустимой, торф, ил, мелкий песок и глинистые грунты с примесью ила и органических веществ (например, голубая глина), верхний почвенный слой, грунты на участках, где возможен длительный застой воды.

Некоторые виды грунтов, чаще всего пылеватые и пески мелкие, применяют для возведения насыпей только с укреплением.

Кроме грунтов природного происхождения, для насыпей применяют отходы промышленности: золошлаковые материалы, отвалы горнодобывающей промышленности.

Насыпи, как правило, возводят из однородных грунтов, но при необходимости их можно отсыпать и из разных, однако располагать эти грунты необходимо слоями. Предпочтительно в верхней части насыпи (1,0 - 1,5 м) применять более прочные грунты, так как эта часть насыпи обычно подвергается большему воздействию природных факторов и транспортных средств. Недопустима беспорядочная отсыпка грунтов в насыпи, поскольку она приводит к неравномерному перераспределению влаги и изменению физических свойств под влиянием климатических факторов. Вследствие этого нарушается ровность при морозном пучении грунта, а при оттаивании образуется неравнопрочное основание дорожной одежды, что ведет также к нарушению ровности или разрушению дорожной одежды.

При отсыпке нижней части насыпи из дренирующих грунтов толщина этого слоя должна быть больше высоты капиллярного поднятия в этом грунте, для того чтобы предотвратить приток воды в верхнюю часть насыпи.

5.3. Выбор способа производства работ и ведущей машины

Выбор рациональных типов машин для возведения земляного полотна автомобильных дорог зависит от следующих факторов:

Техническая возможность применения тех или иных машин в данных условиях рельефа;

Конструкция земляного полотна, расположение резервов грунта, его качество и трудность разработки;

Организационные условия производства работ, главными из которых являются объемы работ и сроки их выполнения;

Условия полной загрузки выбранных машин в течение всего срока работ;

Экономические показатели и качество работ.

Подбирая состав машин для возведения земляного полотна, следует в первую очередь определить основные (ведущие) машины, с помощью которых можно с наименьшими затратами выполнить основные объемы земляных работ в соответствующих условиях, а затем вспомогательные (комплектующие) машины для выполнения прочих вспомогательных работ, входящих в технологический процесс сооружения земляного полотна. В составе подразделения работа всех машин должна быть увязана по производительности.

Исходя из продольного профиля автомобильной дороги, с учетом грунтовых условий строящаяся дорога разбивается на отдельные участки с неодинаковыми условиями производства земляных работ: насыпь из боковых резервов, из привозного грунта, разработка насыпи продольным перемещением грунта в насыпь или в отвал и т.д. Следовательно, необходимо выбрать способ производства работ и тип ведущей машины для каждого характерного участка дороги. Все данные заносятся в ведомость «Способы производства работ и тип ведущей машины» (табл. 18).

Таблица 18

Для назначения ведущей машины необходимо учесть требования , . Ниже приводятся рекомендации по назначению ведущей машины в зависимости от местных условий производства земляных работ.

Бульдозеры целесообразно применять в легких и малосвязных грунтах при высоте насыпи до 1 м, в глинистых и тяжелых грунтах при высоте насыпи до 1,5 м при наличии притрассовых резервов. В этом случае стоимость земляных работ может быть ниже стоимости скреперных работ. Эффективно применение бульдозера при возведении земляного полотна из выемок с дальностью перемещения грунта до 50 м, под уклон – до 100 м.

Скреперы наиболее эффективно применять при разработке глинистых грунтов с влажностью, близкой к оптимальной, в боковых резервах, когда разность отметок высоты насыпи и дна резерва составляет до 1,2 - 2,0 м, а также при разработке сосредоточенных резервов или выемок с перемещением грунта в насыпь прицепными скреперами на расстояние до 500 м и полуприцепными – до 3000 м.

Стоимость работы большегрузных самоходных скреперов на пневматических шинах ниже стоимости работы скрепера малой вместимости, а также скреперов, прицепных к трактору на гусеничном ходу. В ряде случаев отсыпка грунта в насыпь скреперами при расстоянии перемещения грунта до 1,5 км более экономична, чем транспортирование грунта в автосамосвалах, загружаемых экскаватором с ковшом объемом 0,5 - 1 м 3 .

Одноковшовые экскаваторы применяют при разработке глубоких выемок, сосредоточенных резервов грунта, имеющих глубину более 2 - 2,5 м, а также при возведении земляного полотна в условиях заболоченной местности. Транспортирование грунта осуществляется автомобилямисамосвалами.

При глубоких выемках с близко залегающими грунтовыми водами можно использовать экскаватор-драглайн в комплексе с транспортными средствами.

При возведении земляного полотна может быть организована совместная работа землеройных машин, используемых в качестве ведущих:

а) при возведении насыпей высотой от 1,5 до 3,5 м из боковых уширенных резервов наряду со скреперами можно комбинировать работу бульдозера и экскаватора-драглайна. В этом случае бульдозер, работающий на уширении резерва в полевую сторону, подает грунт в зону действия экскаватора, находящегося на насыпи;

б) при тех же параметрах насыпи, но при односкатных резервах целесообразно использовать пары бульдозер - автосамосвал и бульдозер - скрепер. По данной технологии производства земляных работ бульдозер устраивает насыпь до 1,0 - 1,5 м из бокового резерва, верхняя часть насыпи устраивается из привозного грунта автосамосвалом или скрепером;

в) в глубоких выемках целесообразно применять способ, при котором растительный и верхний слои грунта разрабатывают бульдозерами и скреперами , а оставшуюся часть – экскаваторами ;

г) при значительном колебании рабочих отметок земляного полотна можно применять скреперы для продольного перемещения грунта в пониженные места и комбинирование их работы с бульдозерами .

Выбор ведущей машины для производства земляных работ обусловлен группой грунта по трудности разработки (Приложение 2). Следует иметь в виду, что один и тот же грунт может быть отнесен к разным группам по трудности разработки в зависимости от типа применяемой машины.

5.4. Построение графика распределения земляных масс

На основании заданного продольного профиля, ведомости объемов земляных работ (насыпь, выемка, канава) и выбранных средств механизации составляется попикетный график распределения земляных масс (рис.2). Переуплотнение грунта в насыпи по сравнению с объемом грунта в резервах или выемках учитывается коэффициентом переуплотнения (1,05 - 1,1).

На графике показывают места, откуда берут грунт для возведения насыпей и где его используют при разработке выемок. В соответствующей графе стрелками и цифрами обозначают дальность и направление перемещения грунта для каждой ведущей землеройной машины.

Разработку графика распределения земляных масс рекомендуется начинать с распределения земляных масс выемок. Грунт выемок наиболее целесообразно использовать для возведения смежных насыпей, особенно на тех участках, где нельзя заложить резервы или грунта резервов недостаточно. Следует иметь в виду, что производительность скреперов и бульдозеров повышается при зарезании и перемещении грунта под уклон.

При возведении насыпей из боковых резервов необходимо определить их размеры. В таком случае объем грунта, полученный в резервах в пределах одного пикета, должен быть равен объему грунта для насыпи с учетом коэффициента переуплотнения. Наибольшее количество грунта, которое можно получить из резервов, зависит от ширины и глубины резервов. Глубина боковых резервов должна быть не более 1,5 м. Ширина резервов определяется расчетом исходя из условия, что они должны быть размещены в пределах полосы отвода. При этих требованиях максимальная ширина двух резервов определяется по формуле:

2 b 1 = П – В п – 2С, (25)

где П – ширина полосы отвода, м;

В п – ширина подошвы земляного полотна в пределах наружных кромок резерва, м;

С – расстояние от наружной кромки откоса резерва до границы полосы отвода, которое определяется условиями производства работ, но не менее 1 м.

По согласованию с землепользователями допускается временное использование земель в период строительства, которые после рекультивации им возвращаются. Если окажется, что грунта из боковых резервов недостаточно для взведения насыпи, то недостающее количество может быть получено путем продольного перемещения грунта из соседних или сосредоточенных резервов в стороне от трассы. При назначении размеров боковых резервов рекомендуется сохранять постоянную их ширину на участках трассы с малоизменяющимися рабочими отметками земляного полотна. В этом случае возникает необходимость, помимо поперечного перемещения грунта бульдозерами, в продольной возке грунта скреперами из соседних резервов.

При известной глубине резерва h р и коэффициентах заложения внутреннего m и внешнего n откосов ширина резерва поверху b 1 и ширина понизу b 2 :

b 1 = + ( ) h р , (26)

b 2 = - ( ) h р . (27)

Установив размеры резервов и количество грунта, которое можно получить из них для отсыпки насыпи, на графике распределения земляных масс показывают распределение земляных работ по типам машин и дальности перемещения грунта.

Показывают оплачиваемые земляные работы, т.е. объемы насыпей, которые возводятся за счет грунта из резервов и выемок, а также объемы грунта из выемок, которые перемещаются в насыпь или кавальер. Устройство кавальеров грунта нежелательно, так как вызывает излишние затраты.

5.5. Определение дальности перемещения грунта

Практически дальность перемещения грунта при возведении насыпи бульдозерами определяется как расстояние между точкой врезания отвала в грунт и точкой освобождения его от грунта, т.е. средними точками массивов разработки и отвала грунта.

При перемещении грунта бульдозером из одностороннего бокового резерва при работе одного бульдозера (для двухсторонних резервов) с послойным возведением насыпи из каждого резерва и при работе двух и более бульдозеров на разных захватках средняя дальность перемещения грунта

l ср = + m H ср + . (28)

Для двухсторонних резервов при работе двух бульдозеров на одной захватке средняя дальность перемещения грунта

l ср =0,25 [В +3 m H ср ] + . (29)

Данные формулы применяются при перемещении грунта бульдозерами на участках с подъемом до 1:10. При подъемах до 1:20 длину пути следует увеличивать на 20 %, а при подъемах более 1:20 – на 40 %.

При продольном перемещении грунта из смежной выемки в насыпь l ср определяется как расстояние между центрами тяжести массивов выемки и насыпи.

При возведении насыпи скреперами дальность перемещения грунта определяется как полусумма рабочего и холостого пробегов скрепера, измеренных по действительной длине перемещения. Для этого необходимо вначале выбрать схему движения скрепера и определить ее параметры (длину пути при наборе грунта, радиус поворота, длину пути при разгрузке грунта).

При возведении насыпи из привозного грунта (сосредоточенного грунтового резерва или карьера) при равномерных объемах по длине дороги средняя дальность перевозки

L ср = l k + 0,5 L , (30)

где l k - расстояние от карьера (грунтового резерва) до точки примыкания к строящемуся участку дороги, км;

L – длина участка строящейся дороги, км.

При неравномерных объемах земляных работ устанавли-вают среднюю дальность транспортировки грунта как средневзвешенную:

L ср = S (V i l i ) / S V i , (31)

где V i – объём земляных работ, м 3 ;

l i – расстояние перевозки, км.

5.6. Комплектование специализированных отрядов машин

для выполнения земляных работ

Выравнивание и уплотнение основания насыпей выполняется после снятия растительного слоя непосредственно перед устройством вышележащих слоев.

Рыхление грунта выполняют для повышения производительности землеройных машин. Для повышения производительности бульдозеров предварительное рыхление следует производить при разработке тяжелых и сухих грунтов III и IV категорий трудности разработки. В этом случае траншейный способ разработки грунта не применяется.

Разравнивание грунта выполняют после его отсыпки в насыпь. Толщина отсыпаемых слоев назначается в зависимости от применяемых средств уплотнения. Наиболее целесообразно для разравнивания грунта использовать бульдозеры, реже используются автогрейдеры.

Уплотнение грунтов в насыпи целесообразнее выполнять пневмоколесными катками, которые обеспечивают высокое качество и требуемый коэффициент плотности. При отсыпке верхней части земляного полотна для дорог с капитальным покрытием в пределах 1,5 м от поверхности покрытия во II дорожно-климатической зоне коэффициент требуемой плотности грунта должен быть 0,98 - 1,0, в пределах от 1,5 до 6 м при условии неподтопляемости – 0,95, а более 6 м – 0,98.

Планировка земляного полотна включает следующие работы: планировку поверхности земляного полотна и дна резервов, планировку откосов насыпей, резервов и выемок. Ее можно производить автогрейдерами или прицепными грейдерами с откосниками и уширителями отвала, скребками на стреле экскаватора или экскаваторами-планировщиками с телескопической стрелой, а также специальными откосоотделочными машинами.

Покрытие откосов и дна резервов растительным грунтом – завершающая операция.

5.7. Определение количества слоев возводимой насыпи

Количество необходимых конструктивных слоев насыпи

n c = Н ср / H i , (32)

где Н ср средняя рабочая отметка насыпи, м;

Н i толщина конструктивного слоя, м.

Толщина слоя выбирается в зависимости от требуемого коэффициента уплотнения и типа уплотняющей машины (табл. 19) или рассчитывается по формулам.

5.8. Определение толщины уплотняемого слоя насыпи для различных типов уплотняющих и трамбующих машин

Толщина уплотняемого слоя грунта катками на пневматических шинах определяется по формуле :

h пн = 0,18 , (33)

где W - фактическая влажность уплотняемого грунта, доли ед.;

W о - оптимальная влажность уплотняемого грунта, доли ед.;

m к - масса катка, приходящаяся на одно колесо, кг;

P м - давление в шинах, кг / cм 2 ;

? – коэффициент жесткости шины, зависящий от давления в ней:

P м , кг/cм 2 1 2 3 4 5 6

? 0,6 0,5 0,4 0,3 0,2 0,1

Толщина слоя грунта при уплотнении кулачковыми катками

h кул = 0,65 (L k +2,5 d h p ), (34)

где L k – длина кулачка, см;

d – наименьший поперечный размер опорной поверхности кулачка, см;

h p – глубина разрыхляемой верхней части слоя грунта, образующегося в период выхода кулачка из слоя, см; зависит от длины кулачка и принимается равной 3 - 4 см.

Вибрационные катки оцениваются критериями отношения возбуждающей силы к их весу: P / Q = K. При определенном соотношении P и Q наступает критическое состояние К о , когда качественно меняется колебание вибрирующей массы или круглого металлического вальца. При K < К о поверхность вибрирующей массы не отрывается от уплотняемого слоя, грунт испытывает знакопеременное воздействие и происходит виброуплотнение. В случае K > К о поверхность вибрирующей массы отрывается от поверхности грунта и уплотнение происходит вибротрамбованием.

Вибрирование способствует поднятию воды из нижней части уплотняемого слоя вверх. Лучшие результаты виброуплотнением и вибро-трамбованием достигаются, когда влажность грунта превышает оптимальную, определенную стандартным уплотнением, на 10 – 20 %.

Масса вибротрамбующей машины выбирается по удельному статическому давлению:

P = 0,1 Q / F, (35)

где P – удельное статическое давление, МПа;

Q – масса уплотняющей машины или масса, приходящаяся на вибровалец, кг;

F – площадь контакта вальца с грунтом, см 2 .

Таблица 19

уплотняющей машины

Оптимальная толщина уплотняемого слоя в плотном теле, см (в числителе) и количество проходов по одному следу (в знаменателе) при коэффициенте уплотнения

Связные грунты

Несвязные грунты

Катки прицепные и полуприцепные на пневматических шинах массой, т:

15 – 20 / 6 - 8

30 – 35 / 6 - 8

40 – 45 / 6 - 8

10 – 15 / 8 - 12

25 – 30 / 8 - 10

30 – 35 / 8 - 10

20 – 25 / 4 - 6

30 – 40 / 4 - 6

45 – 50 / 4 - 6

15 – 20 / 6 - 8

25 – 30 / 6 - 8

35 – 40 / 6 - 8

Катки кулачковые прицепные массой 9 и 18 т

20 – 25 / 6 - 8

15 – 20 / 8 - 10

Катки решетчатые массой 25 т

Вибрационные катки массой, т:

Виброуплотня-ющая плита

массой, кг:

Плиты экскаваторные массой 2 - 3 т при падении с высоты 2 - 3 м

Наибольшие глубины уплотнения достигаются для грунтов при удельных статических давлениях, МПа: переувлажненные пески – 0,003 - 0,004, пески оптимальной влажности – 0,006 - 0,01, супеси оптимальной влажности – 0,01 - 0,02.

Толщина уплотняемого слоя зависит от коэффициента уплотнения и массы вибрационного агрегата (табл.20).

Таблица 20

При уплотнении связных грунтов виброкатками эффективность их работы снижается. В зависимости от физико-механических свойств и влажности связных грунтов толщина уплотняемого слоя составляет 35 - 60 см для катков массой 6 - 12 т.

Толщина уплотняемого слоя трамбованием определяется по следующей формуле:

h тр = 1,1 В наим (1 – е –3,7 i / i), (36)

где h тр – толщина уплотняемого трамбованием слоя, см;

В наим - наименьший размер трамбовки в плане, см;

W, W о – фактическая и оптимальная влажность грунта, доли ед.;

i и i n – удельный и предельный импульс трамбовки, кг с / см 2:

i = . (37)

Здесь М – масса трамбовки, кг;

g – ускорение силы тяжести, см / c 2 ;

h п – высота падения трамбовки, см;

К – коэффициент, учитывающий опережающее развитие напряжения относительно развития деформации и нелинейности изменения напряжения (1,7 - 2,0);

F – площадь основания трамбовки, т.е. контакта с грунтом, см 2 ;

? – время удара, с; зависит от массы трамбовки и разновидности грунта (табл. 21).

Таблица 21

Экспериментально определенные значения предельных импульсов трамбовки i n для разных грунтов составляют: для песков 0,005 – 0,007, для суглинков легких 0,007 – 0,012, для суглинков тяжелых 0,012 - 0,02, для глин 0,02 - 0,027.

Число ударов трамбовок по одному месту для достижения необходимой плотности при толщине уплотняемого слоя

n = h тр i n К / h о i , (38)

где h о – оптимальная толщина слоя, см (60 - 80);

К – коэффициент, учитывающий степень уплотнения грунта и его разновидности (табл. 22).

Таблица 22

5.9. Определение объемов работ на послойную разработку грунта для насыпи, его разравнивание и уплотнение

Ширина каждого слоя насыпи

В i = В + 2 m (H cp - h i ) , (39)

где B – ширина земляного полотна поверху, м;

m – заложение откоса насыпи;

h i – толщина отсыпаемого слоя, м.

Объем грунта в каждом слое насыпи

V i = (В i h i + m h i 2 ) L К, (40)

где В i – ширина каждого отдельного слоя насыпи, м;

h i – толщина слоя, м;

L – длина строящегося участка дороги, м;

К – коэффициент переуплотнения.

5.10. Определение объемов работ на планировке земляного полотна

и резервов

Объемы работ на планировке вычисляются отдельно для верха земляного полотна, дна резервов и откосов:

S пл1 = (В + b р ) L , (41)

S пл2 = (В + 2 b р ) L , (42)

S пл3 = 2 L (H cp + h р ) (43)

S пл4 = 2 L (H cp +2 h р ) , (44)

где S пл1 , S пл2 – соответственно площади планировки верха земляного полотна и дна резерва для одностороннего и двухстороннего резерва, м 2 ;

S пл3 , S пл4 – соответственно площади планировки откосов земляного полотна и резерва для одностороннего и двухстороннего резерва, м 2 ;

b р – ширина резерва по дну, м;

h р – глубина резерва, м;

L – длина участка, м.

5.11. Расчет основных землеройно-транспортных и землеройных

машин для выполнения земляных работ

Потребное количество ведущих машин для выполнения земляных работ определяется на основании рассчитанных объемов работ и принятой скорости потока:

N маш = Q / Н выр N см (45)

или N маш = Q Н вр / N см , (46)

где Q – объем работ рассматриваемого вида;

Н выр – норма выработки в смену (сменная производительность);

Н вр – норма времени, машино-смен / ед.работ;

N см – число смен работы по всей длине дороги:

N см = L / V , (47)

где L – длина дороги, м;

V – длина захватки, м.

Для удобства расчет следует вести в форме ведомости (Приложение 3).

Норма выработки (сменная производительность) для конкретной машины рассчитывается по формулам, приведенным в курсе «Эксплуатация дорожных машин» , или определяется по формуле:

Н выр = Т N / Н вр, (48)

где Т – продолжительность смены (8,2 ч);

N – единица объема работ, для которой исчислена норма времени (например,100 м 3 грунта в плотном теле);

Н вр – норма времени по сборникам ЕНиР, ТНиР, СНиР-91 , , , машино-часов на единицу объема работ.

Поскольку нормы времени в сборниках приведены в машино-часах, для расчета по формулам (45), (46) их требуется разделить на 8,2 часа для получения результата в машино-сменах.

Определив потребное количество машино-смен на захватку, получим коэффициент использования данной машины на этой захватке К и . Коэффициент использования определяется с точностью до 0,01 и представляет собой отношение потребного количества механизмов к принятому. Необходимо принять захватку такой длины, чтобы коэффициенты использования машин были приближены к единице. Решая вопрос о том, сколько машин следует принять, надо помнить о допустимой перегрузке до 10 – 15 %, т.е. нельзя допускать величину К и более, чем 1,1 - 1,15. При использовании высокопроизводительных машин (с малыми значениями норм времени) целесообразно суммировать коэффициенты использования, т.е. применять такие машины на нескольких захватках.

Для условий автовозки грунта из сосредоточенного резерва выбирают автотранспорт по грузоподъемности из условия оптимального соотношения емкостей ковша экскаватора и кузова автосамосвала:

q а = (5 – 7) q э g , (49)

где q а грузоподъемность автосамосвала, т;

q э объем ковша экскаватора, м 3 ;

g – насыпная плотность грунта земляного полотна, т / м 3 .

5.12. Укрепительные работы при возведении земляного полотна

Для предотвращения подмывов откосов и нижней части земляного полотна, а также размывов водоотводных канав, конусов искусственных сооружений откосы и выходные русла подлежат укреплению сборными бетонными элементами, мощением, дернованием. В настоящее время широко используются геотекстильные материалы (георешетки типа «Прудон» и синтетические полотна типа «Дорнит», «Бидим»).

Укрепление травосеянием применяют при грунтах с показателем 5 < pH < 7 (слабокислые грунты), руководствуясь нормами высева семян (табл. 23) и внесения удобрений (табл. 24).

Таблица 23
Таблица 24

Для расчета потребности машин и дорожных рабочих на укрепительных работах руководствуются нормами , .

5.13. Составление технологической карты на возведение

земляного полотна

В проекте производства работ необходимо составление технологической карты на каждый из характерных участков земляного полотна, например на возведение насыпи высотой до 1,5 - 2 м из боковых резервов, на устройство насыпи из привозного грунта, на продольную разработку выемки, на устройство насыпи на основании из геотекстильных материалов и т.д. Выбор той или иной технологии обусловлен местными условиями (рельефом, уровнем грунтовых вод, пригодностью грунтов), наличием механизированной базы предприятия. Кроме того, технологическая карта составляется с учетом построенного попикетного графика распределения земляных масс и технологических расчетов с учетом требований ВСН 13-73 .

В курсовом проекте необходимо составить одну технологическую карту на возведение земляного полотна для наиболее протяженного по длине характерного участка. Кроме того, необходимо привести технологические расчеты для работ, не учтенных технологической картой. Например, составляется технологическая карта на возведение насыпи высотой до 1,5 м из боковых резервов. Согласно попикетному графику распределения земляных масс присутствует автовозка из сосредоточенного резерва. В этом случае после расчета технологической карты приводится надпись «Работы, не входящие в технологическую карту, но присутствующие при возведении насыпи» и по вышеприведенной схеме рассчитывается потребное количество экскаваторов и автосамосвалов для устройства насыпи из привозного грунта. Объем работ для расчета принимается согласно попикетному графику распределения земляных масс.

Технологическая карта включает следующие разделы: область применения карты, описание технологии работ и расчет потребных ресурсов, схема организации работ (схема потока), указания по выполнению технологических процессов, требования контроля качества работ и указания по технике безопасности.

Область применения карты. В разделе указываются условия применения технологической карты, в частности, законченные виды работ, для которых составлена карта.

Описание технологии работ и расчет потребных ресурсов . В этом разделе дается краткое описание рабочих процессов в той последовательности, которая соблюдается при производстве работ, указываются объемы работ и необходимые машины, производится расчет технологической карты (Приложение 3), рассчитывается потребность рабочих и машин (табл. 25).

Таблица 25

При определении потребности рабочих необходимо разделять их на рабочих-строителей (дорожных рабочих) и машинистов. Количество машинистов, обслуживающих одну машину, принимается равным количеству машин при односменном режиме работы (1 чел.-ч равен 1 машино-ч). При наличии помощника машиниста, а также при двухсменном режиме работы количество рабочих при машине удваивается (2 чел.-ч равны 1 машино-ч).

Потребность дорожных рабочих определяется по сборникам СНиП 4.02-91; 4.05-91 (СНиР-91) , по трудоемкости на единицу работ (чел.-ч / ед. работ). Квалификационный состав исполнителей принимается согласно .

Схема организации работ. Раздел оформляется графически (рис. 3).

Указания по выполнению технологических процессов. В разделе приводятся наиболее производительные и рациональные методы выполнения технологических процессов карты. Рекомендации обязательно поясняются схемами работы машин, чертежами забоев, схемами разработки и укладки грунта.

Требования к качеству работ. Указываются минимальные допустимые отклонения от проектных размеров объекта, для которого составлена технологическая карта. Делается ссылка на нормативный источник норм качества производства земляных работ.

Указания по технике безопасности . Приводятся правила по технике безопасности для каждого вида работ и каждой машины. В отдельных случаях может быть дана ссылка на конкретные разделы правил по технике безопасности .

В заключении определяется количество рабочих и календарных дней и назначаются сроки производства земляных работ.

ЛИТЕРАТУРА

1. СНиП 3.01.01-85. Организация строительного производства / Минстрой России. – М.: ГУП ЦПП, 1995.

2. ГОСТ 2.105-79 . Общие требования к текстовым документам. – М.: Изд-во стандартов, 1979.

3. СНиП 2.05.02-85. Автомобильные дороги. Нормы проектирования. – М.: Стройиздат, 1986.

4. СНиП 23-01-99. Строительная климатология / Госстрой России. – М.: ГУП ЦПП, 2000.

5. СНиП 1.04.03-85. Нормы продолжительности строительства и задела в строительстве предприятий, зданий и сооружений. – М.: Стройиздат, 1991.

6. Каменецкий Б.И., Кошкин И.Г. Организация строительства автомобильных дорог: Учебное пособие для техникумов. – 4-е изд., перераб. и доп. – М.: Транспорт, 1991.

7. СН 467-74. Нормы отвода земель для автомобильных дорог. – М.: Стройиздат, 1974.

8. Технологические правила и карты строительства лесовозных автомобильных дорог. Том I. Технологические правила. – Л.: Гипролестранс, 1975.

9. ЕНиР. Сборник Е13. Расчистка трассы линейных сооружений от леса / Госстрой СССР. – М.: Стройиздат, 1988.

10. СНиП 4.02-91; 4.05-91. Сборники сметных норм и расценок на строительные работы. Сборник 1. Земляные работы / Госстрой СССР. – М.: Стройиздат, 1992.

11. Технологические правила и карты строительства лесовозных автомобильных дорог. Том II. Технологические карты. – Л.: Гипролестранс, 1975.

12. СНиП 3.06.04-91. Мосты и трубы / Госстрой России. – М.: ГУП ЦПП, 1998.

13. ЕНиР. Сборник Е4. Монтаж сборных и устройство монолитных железобетонных конструкций. Вып. 3. Мосты и трубы / Госстрой СССР. – М.: Стройиздат, 1988.

14. ЕНиР. Сборник Е5. Монтаж металлических конструкций. Вып.3. Мосты и трубы / Госстрой СССР. – М.: Стройиздат, 1987.

15. СНиП 2.05.03-84. Мосты и трубы / Госстрой России. – М.: ГУП ЦПП, 2000.

16. СНиП 3.06.03-85. Автомобильные дороги. Правила производства и приемки работ / Госстрой СССР. – М.: ЦИТП Госстроя СССР, 1986.

17. Руководство по сооружению земляного полотна автомобильных дорог / Минтрансстрой СССР. М.: Транспорт,1982.

18. Афанасьев И.А. Выбор дорожных машин: Учеб. пособие / Перм. гос. техн. ун-т. – Пермь, 2000.

19. Кручинин И.Н. Расчет производительности дорожных машин. Методические указания по изучению дисциплин «Эксплуатация дорожных машин» и «Дорожно-строительные машины и материалы». Екатеринбург: УГЛТА, 2000.

20. ЕНиР. Сборник Е2. Земляные работы. Вып. 1. Механизированные и ручные земляные работы / Госстрой СССР. – М.: Стройиздат, 1988.

21. СНиП 4.02-91; 4.05-91. Сборники сметных норм и расценок на строительные работы. Сборник 27. Автомобильные дороги / Госстрой СССР. – М.: Стройиздат, 1993.

22. ВСН 13-73. Методика составления технологических карт на выполнение основных дорожно-строительных работ. – М.: Минавтодор РСФСР, 1973.

23. Сборник тарифно-квалификационных характеристик основных профессий и должностей руководителей, специалистов, служащих и рабочих дорожного хозяйства / Федеральный дорожный департамент Минтранса РФ. – М.: Центроргтруд, 1998.

Введение ……………………………………………….………………

1. Порядок выполнения проекта………………………………………….

2. Организация строительства автомобильной дороги………………….

2.1. Технико-экономическая характеристика района строительства автомобильной дороги…………………………………….

2.2. Климатическая характеристика района строительства дороги…………………………………………………………….

2.3. Выбор метода организации работ и расчет основных его параметров………………………………….……………………

2.3.1. Обоснование принятого метода организации работ………………………………………………………….

2.3.2. Календарная продолжительность строительного сезона…………………………………………….…………..

2.3.3. Определение темпа потока………………………………….

3. Подготовка дорожной полосы…………………………………………

3.1. Восстановление и закрепление трассы…………….…………..

3.2. Прорубка просеки……………………………………………….

3.3. Очистка дорожной полосы от пней, кустарника и снятие растительного слоя………………………….…………………..

3.3.1. Составление ведомости объемов работ для подготовки дорожной полосы…………………….……………………...

3.3.2. Определение трудозатрат, количества машино-смен и выбор комплекта машин для подготовки дорожной полосы………………………………………………………..

4. Строительство искусственных сооружений…………………………..

4.1. Составление ведомости искусственных сооружений…………

4.2. Определение состава бригады для строительства искусственных сооружений…………………………………….

5. Возведение земляного полотна…………………………….…………..

5.1. Разбивка на местности земляного полотна и водоотводных сооружений………………………………………………………

5.2. Выбор грунтов для отсыпки земляного полотна….…………..

5.3. Выбор способа производства работ и ведущей машины……..

5.4. Построение графика распределения земляных масс………….

5.5. Определение дальности перемещения грунта…….…………..

5.6. Комплектование специализированных отрядов машин для выполнения земляных работ……………………………………

5.7. Определение количества слоев возводимой насыпи………….

5.8. Определение толщины уплотняемого слоя насыпи для различных типов уплотняющих и трамбующих машин……...

5.9. Определение объемов работ на послойную разработку грунта для насыпи, его разравнивание и уплотнение………...

5.10. Определение объемов работ на планировке земляного полотна и резервов…………………………….………………...

5.11. Расчет основных землеройно-транспортных и землеройных машин для выполнения земляных работ………………………

5.12. Укрепительные работы при возведении земляного полотна…

5.13. Составление технологической карты на возведение земляного полотна………………………………………………

Литература………………………………………………….………………

Приложения………………………………………………………………...

Приложение 1. Средние сроки продолжительности строительного сезона для выполнения основных видов дорожно-строительных работ…………………………...

Приложение 2. Распределение немерзлых грунтов на группы в зависимости от трудности их разработки………………

Приложение 3. Технология работ и расчет потребных ресурсов уширения 6-слойной насыпи (пример реконструкции)………………………………………………………….

ПРИЛОЖЕНИЯ

Приложение 1

Средние сроки продолжительности строительного сезона для выполнения основных видов

дорожно-строительных работ

Область, республика

Строительство сборных искусственных сооружений

Возведение земляного полотна, устройство дорожных оснований

Устройство облегченных покрытий с применением органических вяжущих

Устройство асфальтобетонных покрытий

Устройство цементобетонных покрытий

Начало строительного

Окончание строительного

Календарная продолжительность строительного сезона

Начало строительного

Окончание строительного

Календарная продолжительность строительного сезона

Количество нерабочих дней по метеорологическим условиям

Начало строительного

Окончание строительного

Календарная продолжительность строительного сезона

Количество нерабочих дней по метеорологическим условиям

Начало строительного

Окончание строительного

Календарная продолжительность строительного сезона

Количество нерабочих дней по метеорологическим условиям

Начало строительного

Окончание строительного

Календарная продолжительность строительного сезона

Количество нерабочих дней по метеорологическим условиям

Башкортостан

Курганская

Пермская

Свердловская, Челябинская

Тюменская

Приложение 2

Распределение немерзлых грунтов на группы в зависимости от трудности их разработки

Наименование и характеристика грунтов

Средняя плотность в естественном залегании, кг / м 3

Разработка грунта

Рыхление грунта бульдозерами-рыхлителями

одноковшовыми экскаваторами

скреперами

бульдозерами

грейдерами

Глина:

жирная мягкая и мягкая без примесей

то же, с примесью щебня, гравия до 10 % по объему

Грунт растительного слоя:

без корней и примесей

с корнями кустарника и деревьев

с примесью щебня, гравия

Дресвяный грунт

Песок:

то же, с примесью щебня, гравия более 10 %

Суглинок:

легкий без примесей

легкий с примесью щебня, гравия до 10 % по объему

то же, с примесью щебня, гравия свыше 10 % по объему

тяжелый без примесей, с примесями щебня, гравия до 10 %

то же, с примесью свыше 10 %

Супесь:

без примесей, а также с примесью щебня, гравия до 10 %

то же, с примесью свыше 10 % по объему

Приложение 3

Технология работ и расчет потребных ресурсов уширения 6-слойной насыпи (пример реконструкции)

№ операции

№ захватки

Источник нормы выработки (нормы времени)

Описание рабочих процессов в порядке их технологической последовательности с расчетом объемов работ

измерения

на захватку

на дорогу

Производительность в смену (ед.изм./ смену) или

норма времени (машино-смен / ед. изм.)

Требуемое

количе-ство

машино-смен:

на захватку

на дорогу

Разбивочные работы

Снятие растительного слоя грунта с основания насыпи бульдозером ДЗ-110 и перемещение его в обе стороны за пределы полосы постоянного отвода

Е2-1-22, табл.2

Гидромеханизированный посев семян многолетних трав машиной КДМ-130

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ

ФЕДЕРАЦИИ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ

АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ

КАФЕДРА ТРАНСПОРТА И ДОРОЖНОГО СТРОИТЕЛЬСТВА

ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ

СТРОИТЕЛЬСТВА

АВТОМОБИЛЬНЫХ ДОРОГ

ПОДГОТОВКА ДОРОЖНОЙ ПОЛОСЫ.

УСТРОЙСТВО ИСКУССТВЕННЫХ СООРУЖЕНИЙ.

ВОЗВЕДЕНИЕ ЗЕМЛЯНОГО ПОЛОТНА

Методические указания для студентов

специальности 291000 «Автомобильные дороги и аэродромы»

очной и заочной форм обучения

ЕКАТЕРИНБУРГ

2001

Методические указания предназначены для студентов специальности 291000 «Автомобильные дороги и аэродромы» очной и заочной форм обучения для курсового и дипломного проектирования. В первую часть включены технологические расчеты по подготовке дорожной полосы, устройству искусственных сооружений и возведению земляного полотна автомобильной дороги.

Рецензент - канд. техн. наук, профессор

Редактор

Подписано в печать Формат 60 ´ 84 1 / 16

Плоская печать Печ. л. 2,79 Тираж 100 экз.

Поз. 5 Заказ Цена 9 руб. 60 коп.

Редакционно-издательский отдел УГЛТУ

Отдел оперативной полиграфии УГЛТУ

ВВЕДЕНИЕ

Целью методических указаний является оказание помощи студентам очной и заочной форм обучения специальности 291000 «Авто-мобильные дороги и аэродромы» в выполнении курсового проекта по дисциплине «Технология и организация строительства автомобильных дорог» и подготовке дипломного проекта строительства автомобильной дороги.

В настоящих методических указаниях приводятся последовательность и методика выполнения курсового проекта.

1. ПОРЯДОК ВЫПОЛНЕНИЯ ПРОЕКТА

Курсовой и дипломный проекты должны быть максимально приближены к уровню выполнения проекта производства работ (ППР) согласно СНиП 3.01.01-85 применительно к конкретным условиям деятельности дорожно-строительных организаций. В целом проект на строительство автомобильной дороги охватывает два основных раздела: возведение земляного полотна с подготовкой дорожной полосы и устройством искусственных сооружений , устройство дорожной одежды с обустройством дороги.

Исходными данными для выполнения ППР, а, следовательно, и курсового проекта являются:

Общие сведения о природно-климатических и грунтово - геологических условиях строительства;

Рабочие чертежи (продольный профиль автомобильной дороги, план трассы в горизонталях, ведомость объемов земляных работ);

Сведения о размещении резервов и карьеров, а также качестве местных (паспорта карьеров, сертификаты материалов);

Сведения об источниках получения привозных строительных материалов (битумов , железобетонных изделий и т. д.);

Сведения о количестве и типах дорожно-строительных машин, имеющихся на балансе в дорожно-строительных организациях.

Для выполнения реального проекта целесообразно в период производственной практики собрать сведения по применяемым или разрабатываемым новым технологиям выполнения дорожно-строительных работ, современным материалам и машинам, в первую очередь, иностранных производителей. В качестве исходных данных могут быть использованы также материалы ранее выполненного курсового проекта по дисциплине «Изыскания и проектирование автомобильных дорог».

Расчетно-пояснительная записка состоит из введения и семи разделов. Во введении следует отразить значение строительства автомобильных дорог, а также основные направления технического прогресса в организации и механизации дорожно-строительных работ. Содержание других разделов проекта приведено в настоящих методических указаниях.

По мере выполнения расчетов и графических работ пояснительную записку рекомендуется оформлять начисто, предъявляя выполненные разделы преподавателю для проверки на очередном контроле или консультации. Оформление курсового проекта выполняется на основании ГОСТ 2.105-79 .

2. ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА АВТОМОБИЛЬНОЙ

ДОРОГИ

2.1. Технико-экономическая характеристика района строительства

автомобильной дороги

В разделе даются краткие сведения об экономическом развитии района строительства дороги и расположении основных транспортных путей с указанием вида транспорта и категорий дорог. На основе экономико-транспортных связей приводятся данные о грузо - и пассажироперевозках, обосновывается категория автомобильной дороги и ее назначение. Кроме того, приводится характеристика организации, строящей дорогу.

Исходя из требований СНиП 2.05.02-85 , производится анализ плана и профиля, приводятся технические показатели дороги (табл. 1).

Таблица 1

Описываются рельеф и грунты на трассе, определяются тип местности по увлажнению, карьеры местных строительных материалов. Указывается пригодность материалов для строительства дороги.

2.2. Климатическая характеристика района строительства дороги

На основе СНиП приводятся климатические показатели района строительства автомобильной дороги и составляется дорожно-климатический график (рис. 1). График необходим для назначения сроков производства дорожно-строительных работ в интервалах между весенней и осенней распутицами.

Рис. 1. Дорожно-климатический график

2.3. Выбор метода организации работ и расчет

основных его параметров

2.3.1. Обоснование принятого метода организации работ

Весь комплекс дорожно-строительных работ подразделяется на линейные и сосредоточенные. Линейные работы относительно равномерно распределены по всей трассе. Сосредоточенные работы характеризуются большими объемами и неравномерным расположением их по длине трассы. К ним относят земляные работы с объемом на 1 км, превышающим средний объем земляных работ на дороге в 3 раза и более, а также устройство средних и больших мостов, тоннелей, производственных предприятий, пересечений в разных уровнях, комплексов дорожной и автотранспортной служб.

Главный метод организации работ по строительству автомобильной дороги - поточный, основой которого является комплексный поток, где выполнение линейных и сосредоточенных работ по трассе должно быть увязано во времени и в пространстве с таким расчетом, чтобы линейные работы выполнялись без перерывов, т. е. выполнение сосредоточенных работ должно опережать выполнение линейных работ.

При этом методе все виды работ выполняются специализированными механизированными подразделениями, перемещающимися по трассе в строгой технологической последовательности, как правило, с одинаковой скоростью перемещения. В равные промежутки времени (смена, день) заканчивается строительство равных по длине участков автомобильной дороги.

Специализированные потоки включают в себя несколько частных потоков, например, при устройстве дорожной одежды частные потоки будут предназначены для устройства конструктивных слоев дорожной одежды.

Каждый частный поток состоит из отдельных участков, на которых специализированные звенья выполняют определенные рабочие операции. Такие участки называются захватками. Длину захватки, как правило, принимают равной сменной производительности потока; иногда захватки бывают двух-, трех- или четырехсменными.

Между частными и специализированными потоками, а иногда и между отдельными захватками устраивают разрывы (технологические, организационные), измеряемые количеством смен.

В зависимости от характера и объемов строительных работ рекомендуется работы по строительству дороги назначать в следующей последователь­ности: в зимний период прорубку просеки вы­полняет специализированная комплексная бригада, основные работы производятся комплекс­ным потоком, в составе которого отдельные его звенья выполняют линей­ные и сосредоточенные работы:

Линейные работы по подготовке дорожной полосы (восстановление трассы, очистка трассы от камней, кустарника, спиливание и корчевка пней, снятие растительного слоя);

Сосредоточенные работы по устройству искусственных сооружений;

Сосредоточенные земляные работы в местах устройства искусственных со­оружений, высоких насыпей и глубоких выемок;

Линейные земляные работы по возведению земляного полотна из привозно­го грунта, рекультивация нарушенных земель;

Линейное устройство дорожной одежды отдельными звеньями по укладке конструктивных слоев;

Обустройство дороги в составе комплексного потока.

При устройстве насыпи на болотах и других слабых грунтах земляные работы могут быть назначены в зимний период.

С целью максимального использования светового дня целесообразно принять следующую сменность работ: прорубку просеки и устройство искусственных сооружений – в 1 смену, остальные работы – в 2 смены.

2.3.2. Календарная продолжительность строительного сезона

Календарные сроки продолжительности строительного сезона устанавливаются на основе средних многолетних данных СНиП 1.04.03-85 (Приложение 1). Следует отметить одну закономерность, связанную с началом строительного сезона. Вне зависимости от вида работ дата начала сезона в одной какой-либо области одна и та же, что объясняется фактором проезжаемости колесных машин и отсутствием прилипания грунта к рабочим органам дорожно-строительных машин. Даты окончания строительного сезона для отдельных видов дорожно-строительных работ различны из-за неодинаковых технологических свойств применяемых дорожно-строительных материалов.

Начало основных работ назначается на конец весенней распутицы, а их оконча­ние - на начало осенней распутицы.

При отсутствии данных даты начала весенней распутицы Z н и ее окончания Z к определяются по формулам :

Z н = То + 5 / a ; (1)

Z к = Z н + (0,7 h пр / a), (2)

где То – дата перехода температуры воздуха через 0 оС;

a - климатический коэффициент, характеризующий скорость оттаивания грунта, м / сутки (для Курганской области a = 6, для Пермской области a = 4,5, для Свердловской области a = 4, для Челябинской области a = 3,5);

h пр – максимальная глубина промерзания грунта в районе строительства, см (для Курганской области h пр = 200 см, для Пермской области h пр = 180 см, для Свердловской области h пр = 190 см, для Челябинской области h пр = 180 см).

Количество рабочих смен в строительном сезоне

Тсм = Ксм (Тк – Твых – Тат - Ттех ), (3)

фосфорные

калийные

2. Органические - торфокомпост

Для расчета потребности машин и дорожных рабочих на укрепительных работах руководствуются нормами , .

5.13. Составление технологической карты на возведение

земляного полотна

В проекте производства работ необходимо составление технологической карты на каждый из характерных участков земляного полотна, например на возведение насыпи высотой до 1,5 - 2 м из боковых резервов, на устройство насыпи из привозного грунта, на продольную разработку выемки, на устройство насыпи на основании из геотекстильных материалов и т. д. Выбор той или иной технологии обусловлен местными условиями (рельефом, уровнем грунтовых вод, пригодностью грунтов), наличием механизированной базы предприятия. Кроме того, технологическая карта составляется с учетом построенного попикетного графика распределения земляных масс и технологических расчетов с учетом требований ВСН 13-73 .

В курсовом проекте необходимо составить одну технологическую карту на возведение земляного полотна для наиболее протяженного по длине характерного участка. Кроме того, необходимо привести технологические расчеты для работ, не учтенных технологической картой. Например, составляется технологическая карта на возведение насыпи высотой до 1,5 м из боковых резервов. Согласно попикетному графику распределения земляных масс присутствует автовозка из сосредоточенного резерва. В этом случае после расчета технологической карты приводится надпись «Работы, не входящие в технологическую карту, но присутствующие при возведении насыпи» и по вышеприведенной схеме рассчитывается потребное количество экскаваторов и автосамосвалов для устройства насыпи из привозного грунта. Объем работ для расчета принимается согласно попикетному графику распределения земляных масс.

Технологическая карта включает следующие разделы: область применения карты, описание технологии работ и расчет потребных ресурсов, схема организации работ (схема потока), указания по выполнению технологических процессов, требования контроля качества работ и указания по технике безопасности .

Область применения карты. В разделе указываются условия применения технологической карты, в частности, законченные виды работ, для которых составлена карта.

Описание технологии работ и расчет потребных ресурсов . В этом разделе дается краткое описание рабочих процессов в той последовательности, которая соблюдается при производстве работ, указываются объемы работ и необходимые машины, производится расчет технологической карты (Приложение 3), рассчитывается потребность рабочих и машин (табл. 25).

Таблица 25

При определении потребности рабочих необходимо разделять их на рабочих-строителей (дорожных рабочих) и машинистов. Количество машинистов, обслуживающих одну машину, принимается равным количеству машин при односменном режиме работы (1 чел.-ч равен 1 машино-ч). При наличии помощника машиниста, а также при двухсменном режиме работы количество рабочих при машине удваивается (2 чел.-ч равны 1 машино-ч).

Потребность дорожных рабочих определяется по сборникам СНиП 4.02-91; 4.05-91 (СНиР-91) , по трудоемкости на единицу работ (чел.-ч / ед. работ). Квалификационный состав исполнителей принимается согласно .

Схема организации работ. Раздел оформляется графически (рис. 3).

Указания по выполнению технологических процессов. В разделе приводятся наиболее производительные и рациональные методы выполнения технологических процессов карты. Рекомендации обязательно поясняются схемами работы машин, чертежами забоев, схемами разработки и укладки грунта.

Требования к качеству работ. Указываются минимальные допустимые отклонения от проектных размеров объекта, для которого составлена технологическая карта. Делается ссылка на нормативный источник норм качества производства земляных работ.

Указания по технике безопасности . Приводятся правила по технике безопасности для каждого вида работ и каждой машины. В отдельных случаях может быть дана ссылка на конкретные разделы правил по технике безопасности .

В заключении определяется количество рабочих и календарных дней и назначаются сроки производства земляных работ.

ЛИТЕРАТУРА

1. СНиП 3.01.01-85. Организация строительного производства / Минстрой России. – М.: ГУП ЦПП, 1995.

2. ГОСТ 2.105-79 . Общие требования к текстовым документам. – М.: Изд-во стандартов, 1979.

3. СНиП 2.05.02-85. Автомобильные дороги. Нормы проектирования. – М.: Стройиздат, 1986.

4. СНиП. Строительная климатология / Госстрой России. – М.: ГУП ЦПП, 2000.

5. СНиП 1.04.03-85. Нормы продолжительности строительства и задела в строительстве предприятий, зданий и сооружений. – М.: Стройиздат, 1991.

6. , Кошкин строительства автомобильных дорог: Учебное пособие для техникумов. – 4-е изд., перераб. и доп. – М.: Транспорт, 1991.

7. СН 467-74. Нормы отвода земель для автомобильных дорог. – М.: Стройиздат, 1974.

8. Технологические правила и карты строительства лесовозных автомобильных дорог. Том I. Технологические правила. – Л.: Гипролестранс, 1975.

9. ЕНиР. Сборник Е13. Расчистка трассы линейных сооружений от леса / Госстрой СССР. – М.: Стройиздат, 1988.

10. СНиП 4.02-91; 4.05-91. Сборники сметных норм и расценок на строительные работы. Сборник 1. Земляные работы / Госстрой СССР. – М.: Стройиздат, 1992.

11. Технологические правила и карты строительства лесовозных автомобильных дорог. Том II. Технологические карты. – Л.: Гипролестранс, 1975.

12. СНиП 3.06.04-91. Мосты и трубы / Госстрой России. – М.: ГУП ЦПП, 1998.

13. ЕНиР. Сборник Е4. Монтаж сборных и устройство монолитных железобетонных конструкций. Вып. 3. Мосты и трубы / Госстрой СССР. – М.: Стройиздат, 1988.

Курганская

Пермская

Свердловская, Челябинская

Тюменская

Приложение 2

Распределение немерзлых грунтов на группы в зависимости от трудности их разработки

Наименование и характеристика грунтов

Средняя плотность в естественном залегании, кг / м3

Разработка грунта

Рыхление грунта бульдозерами-рыхлителями

одноковшовыми экскаваторами

скреперами

бульдозерами

грейдерами

Глина:

жирная мягкая и мягкая без примесей

то же, с примесью щебня, гравия до 10 % по объему

Грунт растительного слоя:

без корней и примесей

с корнями кустарника и деревьев

с примесью щебня, гравия

Дресвяный грунт

Песок:

то же, с примесью щебня, гравия более 10 %

Суглинок:

легкий без примесей

легкий с примесью щебня, гравия до 10 % по объему

то же, с примесью щебня, гравия свыше 10 % по объему

тяжелый без примесей, с примесями щебня, гравия до 10 %

то же, с примесью свыше 10 %

Супесь:

без примесей, а также с примесью щебня, гравия до 10 %

то же, с примесью свыше 10 % по объему

Приложение 3

Технология работ и расчет потребных ресурсов уширения 6-слойной насыпи (пример реконструкции)

№ операции

№ захватки

Источник нормы выработки (нормы времени)

Описание рабочих процессов в порядке их технологической последовательности с расчетом объемов работ

измерения

на захватку

на дорогу

Производительность в смену (ед. изм./ смену) или

норма времени (машино-смен / ед. изм.)

Требуемое

количе­ство

машино-смен:

на захватку

на дорогу

Разбивочные работы

Снятие растительного слоя грунта с основания насыпи бульдозером ДЗ-110 и перемещение его в обе стороны за пределы полосы постоянного отвода

Е2-1-29, табл.5, пп.1б,2б

Уплотнение естественного основания насыпи полуприцепным пневмоколесным катком ДУ-16В к одноосному тягачу МоАЗ 546ЕП при 8 проходах по одному следу

Нарезка уступов в существующей насыпи бульдозером

Е2-1-8, табл. 3, п.7б

Разработка грунта II группы экскаватором ЭО-611 (объем ковша 1,25 м3) с погрузкой в автотранспортные средства

Транспортировка грунта автосамосвалами КамАЗ-5511 при средней дальности возки 10 км

Е2-1-28, п.3б

Разравнивание первого слоя грунта в насыпи бульдозером ДЗ-110 при толщине слоя 0,35 м

Е2-1-29, табл.4, пп.2б,4б

Уплотнение первого слоя грунта насыпи толщиной 0,3 м в плотном теле полуприцепным катком ДУ-16В с одноосным тягачом МоАЗ-546ЕП при 8 проходах по одному следу

Окончание приложения 3

Е2-1-39, пп.3а,4а

Планировка откосов насыпи автогрейдером ДЗ-31-1

Е2-1-36, п.4б

Планировка поверхности земляного полотна автогрейдером ДЗ-31-1 при 3проходах по одному следу

Е2-1-31, табл.3, пп.1б,2б

Окончательное уплотнение верха насыпи самоходным

пневмокатком ДУ-31А при 8 проходах по одному следу

Е2-1-22, табл.2, пп.5а,5г

Покрытие откосов насыпи растительным грунтом с перемещением его до 30 м бульдозером ДЗ-110

Е2-1-22, табл.2

Гидромеханизированный посев семян многолетних трав машиной КДМ-130

1. Подготовка исходной информации

1.1 Анализ природно-климатических условий района строительства

1.2 Определение продолжительности работы специализированных отрядов

1.3 Техническая характеристика автомобильной дороги

1.4 Определение объемов материалов

1.5 Генеральный план района строительства

1.5.1 Обоснование выбора положения производственного предприятия

1.5.2 Определение зон действия притрассовых карьеров

2. Принятие организационно-технических решений

2.1 Выбор ведущей и комплектующих машин для производства работ по строительству дорожной одежды

3. Проектирование организации работ по строительству дорожной одежды

3.1 Состав отряда для устройства слоев дорожной одежды

3.2 Составление технологических схем по устройству дорожной одежды

3.3 Расчет транспортных средств по обеспечению дороги строительными материалами

3.4 Линейно-календарный график

4. Описание технологических схем потока по устройству дорожной одежды

5. Охрана окружающей среды

6. Контроль качества работ и охрана труда

Литература


Введение

Курсовой проект по дисциплине “Технология и организация строительства автомобильных дорог”. Тема проекта “Технология строительства дорожной одежды на участке автомобильной дороги”. Район строительства дороги в Алтайском крае. Техническая категория дроги III. Срок строительства дорожной одежды 1 год. Конструкция: двухслойное покрытие: верхний слой- мелкозернистый горячий асфальтобетон, толщина слоя 4 см; нижний слой- крупнозернистый асфальтобетон, толщина слоя 4,5 см; основание: верхний слой- щебень (сталеплавильный шлак), толщина 12 см; нижний слой- гравий, толщина 16 см; подстилающий слой из песка, толщина 24 см. Протяженность дороги составляет 9,3 км. Грунт земляного полотна супесь легкая, крупная. Местоположение карьеров: песчаные ПК 22, вправо 2,1 км., ПК 80, влево 2,2 км.; каменные ПК 30, влево 2,3 км., ПК 87, вправо 2 км. Железнодорожная станция расположена на ПК 58, вправо 1 км. Асфальтобетонный завод будет располагаться на железнодорожной станции, откуда также будет доставляться щебень и клинец для строительства дорожной одежды.


1. Подготовка исходной информации

1.1 Анализ природно-климатических условий района строительства

Географическое положение

Алтайский край расположен на юго-востоке Западной Сибири между 49-54 градусами с. ш. и 78-87 градусами в. д. Протяженность территории с запада на восток 600 км, с севера на юг - 400 км. Расстояние от Барнаула до Москвы по прямой - около 2940 км, автомобильным путём - около 3400 км.

Территория края относится к двум физическим странам - Западно-Сибирской равнине и Алтай - Саяны. Горная часть охватывает равнину с восточной и южной сторон - Салаирский кряж и предгорья Алтая. Западная и центральная части преимущественно равнинного характера - Приобское плато, Бийско-Чумышская возвышенность, Кулундинская степь. В крае присутствуют почти все природные зоны России - степь и лесостепь, тайга и горы. Равнинная часть края характеризуется развитием степной и лесостепной природных зон, с ленточными борами, развитой балочно-овражной сетью, озёрами и колками.

Климат Алтайского края умеренный, переходный к континентальному, формируется в результате частой смены воздушных масс, поступающих из Атлантики, Арктики, Восточной Сибири и Средней Азии. Абсолютная годовая амплитуда температуры воздуха достигает 90-95°С. Среднегодовые температуры - положительные, 0,5-2,1°С Средние максимальные температуры июля +26...+28°С, экстремальные достигают +40...+42°С. Средние минимальные температуры января −20...−24 °C, абсолютный зимний минимум −50...−55 °C. Безморозный период продолжается около 120 дней.

Наиболее сухой и жаркой является западная равнинная часть края. К востоку и юго-востоку происходит увеличение осадков от 230 мм до 600-700 мм в год. Среднегодовая температура повышается к юго-западу края. Благодаря наличию горного барьера на юго-востоке края господствующий западно-восточный перенос воздушных масс приобретает юго-западное направление. В летние месяцы часты северные ветры. В 20-45 % случаев скорость ветров юго-западного и западного направлений превышает 6 м/с. В степных районах края с усилением ветра связано возникновение суховеев. В зимние месяцы в периоды с активной циклонической деятельностью в крае повсеместно отмечаются метели, повторяемость которых 30-50 дней в году.

Снежный покров устанавливается в среднем во второй декаде ноября, разрушается в первой декаде апреля. Высота снежного покрова составляет в среднем 40-60 см, в западных районах уменьшается до 20-30 см. Глубина промерзания почвы 50-80 см, на оголенных от снега степных участках возможно промерзание на глубину 2-2,5 м.

Таблица 1 - Среднемесячная и годовая температура воздуха

месяц I II III IV V VI VII VIII IX X XI XII год
температура -17,5 -16,1 -9,1 2,1 11,4 17,7 19,8 16,9 10,8 2,5 -7,9 -15 1,3

Рис. 1 - График изменения среднесуточной температуры


Таблица 2 - Повторяемость и скорость ветра

Январь
С СВ В ЮВ Ю ЮЗ З СЗ штиль
25 5,9

Роза ветров

Рис. 2 - Роза ветров за Январь

Таблица 3

Июль
С СВ В ЮВ Ю ЮЗ З СЗ штиль Max из средней скорости по румбам
17 0

Роза ветров

Рис. 3 - Роза ветров за Июль


Гидрология

Водные ресурсы Алтайского края представлены поверхностными и подземные водами. Наиболее крупные реки (из 17 тысяч) - Обь, Бия, Катунь, Чумыш, Алей и Чарыш. Из 13 тысяч озeр самое большое - Кулундинское озеро, его площадь 728 км². Главная водная артерия края - река Обь - длиной в пределах края 493 км, образуется от слияния рек Бии и Катуни. Бассейн Оби занимает 70 % территории края.

Полезные ископаемые

Полезные ископаемые Алтайского края включают полиметаллы, поваренную соль, соду, бурый уголь, никель, кобальт, железную руду и драгоценные металлы. Алтай знаменит уникальными месторождениями яшмы, порфиров, мраморов, гранитов.

1.2 Определение продолжительности работы спецотрядов

Начало и окончание работ спецотрядов зависит от климатических условий района строительства.

Таблица 4 - Допустимые даты начала и окончания работ

Группы работ Наименование работ Минимальная среднесуточная температура воздуха, ºС Даты начала и окончания работ
весна осень
1 Устройство слоев д.о. из каменных материалов (песок, гравий, щебень и т.д.) ≥0 1.05 12.10
2 Строительство слоев д.о. из минеральных материалов и грунтов, обработанных вяжущим в установках, из асфальтобетонных, цементобетонных и шлакобетонных смесей и грунтов обработанных неорганическим вяжущим смешением на дороге.

≥5 весной

≥10 осенью

1.05 21.09
3 Строительство слоев д.о. из минеральных материалов и грунтов, обработанных вяжущим (органическим), смешением на дороге ≥10 1.05 21.09
4 Устройство поверхностной обработки с применением органических вяжущих ≥15 1.05 21.09

I группа Т к =165 дней, Т кл =4 дня

II группа Т к =144 дней, Т кл =11 дня

Таблица 5 - Определение сроков развертывания потоков

№ частного потока Наименование работ на захватках Кол-во смен для развертывания потока Разрыв в сменах Разрыв между началом работ
1

Устройство песчаного дополнительного слоя основания:

1. разработка грунта

2. транспортировка

3. распределение

4. увлажнение

5. уплотнение

2 1 3
2

Устройство нижнего слоя основания из гравия

1. разработка грунта

2. транспортировка

3. распределение

4. увлажнение

5. уплотнение

2 1 3
3

Устройство верхнего слоя основания из щебня (сталеплавильного шлака)

1. подвозка

2. распределение

3. увлажнение

4. уплотнение

5. подвозка клинца

6. распределение

7. увлажнение

8. уплотнение

4 1 5
4

Устройство нижнего слоя покрытия из крупнозернистой асфальтобетонной смеси

1. подвозка

2. распределение

3. подкатка

1 1 2
5

Устройство верхнего слоя покрытия из мелкозернистой асфальтобетонной смеси

1. подвозка

2. распределение

3. подкатка

1 1 2
6

Досыпка обочин песком

1. разработка грунта

2. транспортировка

3. распределение

4. увлажнение

5. уплотнение

2 1 3

Таблица 6 - Продолжительность работы специализированных отрядов

№ частного потока Группа работ Продолжительность работы спецотрядов
По климатическим условиям По технологическим условиям Т вых Т кл Т общ
начало окончание число дней начало окончание число дней
1 1 1.05 12.10 165 1.05 8.09 131 40 11 80
2 1 1.05 12.10 165 4.05 11.09 131 37 11 83
3 1 1.05 12.10 165 7.05 14.09 131 39 11 81
4 2 1.05 21.09 144 12.05 19.09 131 38 11 82
5 2 1.05 21.09 144 14.05 21.09 131 39 11 81
6 1 1.05 12.10 165 16.05 23.09 131 39 11 81

1.3 Техническая характеристика автомобильной дороги

Число полос движения- 2

Ширина полосы движения- 3.5 м.

Ширина проезжей части- 7 м.

Ширина обочины- 2.5 м.

Ширина укрепительной полосы обочины- 0.5 м.

Рис. 4 - Конструкция дорожной одежды


1.4 Определение объемов материала

На всем протяжении строящейся автомобильной дороги конструкция дорожной одежды одинакова по виду материалов и толщине слоев. Подсчет потребности в дорожно-строительных материалах производится по каждому конструктивному слою отдельно, в зависимости от площади слоя согласно сборника 29 “Общие производственные нормы расхода материала в строительстве”.

1. Дополнительный слой основания из песка

2. Нижний слой основания из гравия

3. Верхний слой основания из щебня

4. Нижний слой асфальтобетонного покрытия

5. Верхний слой асфальтобетонного покрытия


6. Досыпка обочин песком

1.5 Генеральный план района строительства

1.5.1 Обоснование выбора местоположения производственного предприятия

При выборе площадки для АБЗ необходимо руководствоваться следующими положениями:

1.Стоимость асфальтобетонной смеси должна быть минимальной;

2.Воизбежании недопустимости остывания смеси, продолжительность ее транспортировки не должна превышать 1.5 часов, при температуре воздуха не менее 5ºС;

3.Количество погрузочно-разгрузочных работ должно быть минимальным.

Учитывая выше изложенное, АБЗ целесообразно располагать у железнодорожной станции.

Рис. 5 - Генеральный план строительства дороги

1.5.2 Определение зоны действия притрассовых карьеров

При определении границ зоны действия карьеров условно предполагаем, что качество песка, сложность его разработки в обоих карьерах одинакова, тогда границей зоны обслуживания карьеров одинаково удаленная от КП 1 и КП 2 (для песка), а также от ККМ 1 и ККМ 2 (для каменных материалов).

а) Определение средней дальности возки песка

Рис. 6 - Определение средней дальности возки песка

б) Определение средней дальности возки гравия

Рис. 7 - Определение средней дальности возки гравия

в) Определение средней дальности возки щебня, воды, битумной эмульсии и асфальтобетонной смеси.


Рис. 8 - Определение средней дальности возки щебня, воды, битумной эмульсии и асфальтобетонной смеси

Таблица 7 - Обеспечение автомобильной дороги строительными материалами и полуфабрикатами

№ п/п Наименование материалов и полуфабрикатов Обеспечиваемый участок Протяженность, км Место получения Средняя дальность возки Кол-во перевозимых грузов
От пк До пк м 3 т
1 Песок для подстилающего слоя
2 Гравий для нижнего слоя основания
3 Щебень для верхнего слоя основания 0+00 93+00 9,3 3,47 15794,19
4 Вода 0+00 93+00 9,3 АБЗ 3,47 5191,78
5 Битумная эмульсия 0+00 93+00 9,3 АБЗ 3,47 37,2
6 к/з асфальтобетонная смесь для нижнего слоя покрытия 0+00 93+00 9,3 АБЗ 3,47 7826,88
7 м/з асфальтобетонная смесь для верхнего слоя покрытия 0+00 93+00 9,3 АБЗ 3,47 7588,8
8 Песок для досыпки обочин

2. Принятие организационно-технических решений

2.1 Выбор ведущей и комплектующих машин для производства работ по строительству дорожной одежды

Выбор ведущей машины осуществляется в зависимости от длины захватки

L- длина трассы;

Т- срок строительства.

При выборе ведущей машины исходим из того, что ее производительность должна быть не менее 116,25 м/см. В качестве ведущей машины согласно ЕНиР Е17 выбираем асфальтоукладчик ДС-1 производительностью 3200 м 2 /см.

С учетом производительности ведущей машины рассчитываем фактическую длину захватки

П ас - производительность асфальтоукладчика;

В п - ширина покрытия с учетом укрепительной полосы обочины


Принимая во внимание, что в нашем случае для устройства нижнего и верхнего слоев покрытия используется один асфальтоукладчик. Реальная длина захватки составляет

Учитывая значение реальной длины захватки, пересчитываем срок строительства

Расчет производительности машин

1. Устройство дополнительного слоя основания из песка

Производительность автосамосвала КамАЗ 5511 для подвозки песка определяется по формуле:

q- грузоподъемность автосамосвала (10 т. или 6,25 м 3);

l СР - средняя дальность возки с песчаного карьера;

v- средняя скорость транспортировки песка (30 км/ч);

t- время на погрузку-разгрузку материала (0,2 ч)

Т- продолжительность смены (8 часов);

Р- емкость цистерны (6 м 3);

к в - коэффициент использования времени (0,85);

v- средняя скорость транспортировки воды (30 км/ч);

t 1 - время на заполнение бака воды (0,12 ч)

t 2 - время на розлив воды (0,27 ч)

2. Устройство нижнего слоя основания из гравия

Производительность автосамосвала КамАЗ 5511 для подвозки гравия определяется по формуле:


q- грузоподъемность автосамосвала (10 т. или 5,71 м 3);

l СР - средняя дальность возки гравия;

Производительность поливомоечной машины ПМ-130

3. Устройство верхнего слоя основания из щебня (шлакового сталеплавильного)

Производительность автосамосвала КамАЗ 5511 для подвозки щебня

q- грузоподъемность автосамосвала (10 т. или 5,56 м 3);

l СР - средняя дальность возки щебня;

Производительность поливомоечной машины ПМ-130

4. Устройство асфальтобетонного покрытия

Производительность автогудронатора ДС-640 для подгрунтовки основания битумной эмульсией определяется по формуле:

q- вместимость цистерны (3,6 т);

l СР - средняя дальность возки с АБЗ;

t- время затраченное на маневрирование, заполнение цистерны и розлив битума (0,75 ч)

Производительность автосамосвала КамАЗ 5511 для подвозки а.б.с.

q- грузоподъемность автосамосвала (10 т.);

l СР - средняя дальность возки а.б.с.;

t- время на погрузку-разгрузку а.б.с. (0,2 ч)

4. Досыпка обочин песком

Производительность поливомоечной машины ПМ-130

Таблица 8 - Состав отряда машин для устройства слоев д.о.

№ п/п № зах Обоснование норм выработки

Наименование операций

Кол-во на захватку П маш/см Требуется машин К загруженности
По расч принято
Устройство дополнительного слоя основания из песка h=24 см
1 1

общ. Часть

Разбивочные работы Дорожные рабочие 2 чел.
2 1 Расчет Транспортировка песка автосамосвалом КамАЗ 5511 м 3 750,79 99,61 7,54 8 0,94
3 1 Е 17-1 Разравнивание песка автогрейдером ДЗ-99 м 2 2619 5333,3 0,49 1 0,49
4 2 Расчет Увлажнение песка поливомоечной машиной ПМ-130 м 3 37,54 65,67 0,57 1 0,57
5 2 Е 2-1-31 Уплотнение песчаного слоя катком ДУ-31 А за 5 проходов по 1 следу м 2 2619 7407,4 0,35 1 0,35

3. Проектирование организации работ по строительству д.о.

3.1 Состав отряда для устройства слоев д.о.

Таблица 9 - Состав отряда при устройстве слоев д.о.

Наименование машин Кол-во машин (коэф. загрузки) Квалификация рабочих Кол-во рабочих

Автосамосвал КамАЗ 5511

Подвозка песка для доп. слоя основания

Подвозка гравия

Подвозка щебня

Подвозка клинца

Подвозка а.б.с.

Подвозка песка для обочин

Автогрейдер ДЗ-99

Разравнивание песка доп. слоя основания и обочин

Разравнивание гравия

Разравнивание щебня и клинца

машинист 6 р.

машинист 6 р.

машинист 6 р.

Поливомоечная машина ПМ-130

Увлажнение доп. слоя основания и обочин

Увлажнение гравия

Увлажнение щебня

Увлажнение клинца

Каток ДУ-31 А

Уплотнение песка доп. слоя основания и обочин

Уплотнение гравия

Уплотнение щебня

Уплотнение клинца

машинист 6 р.

машинист 6 р.

машинист 6 р.

машинист 6 р.


Автогудронатор ДС-53 А

1(0,03) вод. 3 кл. 1
Асфальтоукладчик ДС-1 1(0,5+0,5)

машинист 6 р.

асфальтобетонщик:

Легкий каток 5-6 т.

Тяжелый каток свыше 10 т.

машинист 6 р.

машинист 6 р.

3.2 Составление технологических схем по устройству д. о.

См. приложение 1.

3.3 Расчет транспортных средств по обеспечению дороги строительными материалами

Таблица 10 - Расчет покилометрового количества автосамосвалов

Наименование материала Показатели Ед. изм. Километры Итого маш/см на участок
1 2 3 4 5 6 7 8 9 9,3
Песок для доп. слоя основания Потребность на 1 км. м 3 3794,31 3794,31 3794,31 3794,31 3794,31 3794,31 3794,31 3794,31 3794,31 1138,293
l СР км 3,8 2,8 2,4 3,4 4,4 4,7 3,7 2,7 2,7 3,35
П а/с м 3 93,75 109,91 118,06 99,61 86,15 82,79 95,15 11,84 111,84 100,39
Кол-во авто. на 1 км шт. 41 35 33 39 45 46 40 34 34 12 359
Гравий Потребность на 1 км. м 3 2583,86 2583,86 2583,86 2583,86 2583,86 2583,86 2583,86 2583,86 2583,86 775,16
l СР км 4,8 3,8 2,8 2,8 3,8 4,8 4,2 3,2 2,2 2,45
П а/с м 3 74,67 85,65 100,42 100,42 85,65 74,67 80,89 93,94 112,0 106,87
Кол-во авто. на 1 км шт. 35 31 26 26 31 35 32 28 24 25 293
Щебень с клинцом Потребность на 1 км. м 3 1698,3 1698,3 1698,3 1698,3 1698,3 1698,3 1698,3 1698,3 1698,3 509,49
l СР км 6,3 5,3 4,3 3,3 2,3 1,3 1,7 2,7 3,7 4,35
П а/с м 3 60,98 68,33 77,69 90,02 107,01 131,89 120,66 99,49 84,64 77,16
Кол-во авто. на 1 км шт. 28 25 22 19 16 13 15 18 21 7 184
к/з а.б.с. Потребность на 1 км. м 3 841,6 841,6 841,6 841,6 841,6 841,6 841,6 841,6 841,6 252,48
l СР км 6,3 5,3 4,3 3,3 2,3 1,3 1,7 2,7 3,7 4,35
П а/с м 3 109,68 122,89 139,73 161,91 192,45 237,21 217,02 178,95 152,24 138,78
Кол-во авто. на 1 км шт. 8 7 7 6 5 4 4 5 6 7 59
м/з а.б.с. Потребность на 1 км. м 3 816 816 816 816 816 816 816 816 816 244,8
l СР км 6,3 5,3 4,3 3,3 2,3 1,3 1,7 2,7 3,7 4,35
П а/с м 3 109,68 122,89 139,73 161,91 192,45 237,21 217,02 178,95 152,24 138,78
Кол-во авто. на 1 км шт. 8 7 6 6 5 4 4 5 6 6 57
Песок для обочин Потребность на 1 км. м 3 869,81 869,81 869,81 869,81 869,81 869,81 869,81 869,81 869,81 260,94
l СР км 3,8 2,8 2,4 3,4 4,4 4,7 3,7 2,7 2,7 3,35
П а/с м 3 93,75 109,91 118,06 99,61 86,15 82,79 95,15 111,84 111,84 100,39
Кол-во авто. на 1 км шт. 10 8 8 9 11 11 10 8 8 3 86

3.4 Линейно-календарный график

См. приложение 2.


4. Описание технологических схем потока по устройству д.о.

При постройке дорожных одежд земляное полотно должно быть подготовлено. При этом следует отвести воду из колей и выбоин, высушить грунт, спланировать его, придав ему требуемый поперечный уклон. Дополнительное уплотнение выполняют самоходными пневмоколёсными катками массой 16 или 30 тонн. Уплотнение ведут челночными проходами катка от краёв к середине перекрывая предыдущие полосы на 1/3 ширины уплотняемой полосы. Коэффициент уплотнения грунта должен быть 0,95 - 1,0. Неровности от прохода пневмоколёсных катков выравнивают за два-три прохода самоходных катков с гладкими металлическими вальцами массой не менее 8-10 тонн.

Песок для подстилающих и дренирующих слоев вывозят автомобилями-самосвалами. Его разгружают в кучи по оси дороги или на одной её стороне, а при большой ширине слоя -в кучи на левой и правой половинах дороги. Перед разравниванием материала выставляют высотные колышки по оси дороги, у кромок проезжей части, а если песчаный слой делается на всю ширину дороги, то и на бровках песчаного слоя. Коэффициент уплотнения песка при вертикальной разбивке принимают предварительно 1,1, а в процессе производства работ его уточняют. Высотные колышки на пикетах и в переломных точках выставляют по нивелиру, промежуточные по визиркам. Во II и III дорожно-климатических зонах при ширине песчаного слоя до 7,5 м коэффициент фильтрации песка должен быть не менее 3 м/сут, при большей ширине 5 м/сут. Песок разравнивают и планируют автогрейдером, правильность поперечного профиля проверяют шаблоном, небольшую подправку песка делают вручную. Уплотняют слой самоходными пневмоколёсными катками, виброкатками. Влажность песка должна быть оптимальной. Сухой песок поливают водой из расчёта 4-5 л/м 2 . Уплотняющие средства выбирают таким образом, чтобы уплотнение производить в один слой.

Активный шлак, применяющийся для устройства слоев основания вывозят на земляное полотно или дополнительный слой автомобилями-самосвалами, распределяют автогрейдером, самоходным щебне распределителем ДС-8 или универсальным укладчиком ДС-54 толщиной в плотном теле при устройстве нижнего слоя не более 15 см. Коэффициент уплотнения 1,4-1,5 уточняется в процессе производства работ. Перед распределением шлак поливают водой из расчёта 25-30 л/м 3 неуплотнённого материала. Шлак уплотняют средними или тяжёлыми катками с гладкими вальцами, периодически поливают водой по 3-4 л/м 2 . Общий расход воды составляет 50-60 л/м 2 . Уплотнение ведут от краёв к середине. В места просадок подсыпают шлак. Общее число проходов катков 25-30 по одному следу.

Смеси каменных материалов с минеральными вяжущими обычно готовят в смесительных установках, располагаемых в при трассовых карьерах, а в случае использования привозных материалов - у железнодорожных или водных путей сообщения. Для приготовления смесей используют смесительные установки карьерного типа ДС-50А производительностью 60-120 т/час, реже передвижные бетонные заводы СБ-37 (с-780), СБ-75 производительностью по 30 м/час. При размещении установок следует учитывать малые сроки схватывания цемента. Продолжительность перевозки цементоминеральной смеси, в которую входит портландцемент с началом схватывания не менее 2 часов, не должна превышать 30 минут при температуре воздуха 20 - 30 °С и 50 минут - при температуре воздуха ниже 20 °С. Разрыв по времени между приготовлением цементоминеральной смеси и окончанием её уплотнения не должен превышать б часов. Смесь каменных материалов обработанных минеральными вяжущими, вывозят автомобилями-самосвалами. Приём смесей и их распределение рекомендуется выполнять распределителем щебня ДС-8 или универсальным укладчиком ДС-54. Толщину распределяемой смеси назначают с учетом коэффициента уплотнения, который предварительно принимают 1,25 - 1,3, а затем уточняют в процессе производства работ. Максимальная толщина уложенной смеси в рыхлом состоянии не должна превышать 25 см. При отсутствии укладчиков и распределителей допускается распределять смесь автогрейдером по предварительно установленным высотным колышкам. Смесь в этом случае вывозят на земляное полотно или на ниже лежащий слой в два ряда, параллельных продольной оси основания, а затем разравнивают автогрейдером. Окончательно смесь уплотняют самоходными или полуприцепными пневмоколёсными катками массой 10-16 тонн (ДУ-31) или 25-30 тонн (ДУ-29, ДУ-16В). Количество проходов катка по одному следу не менее 12. Скорость при первых четырёх-пяти проходах катка рекомендуется 1,5-2 км/час. Признаки окончания уплотнения - отсутствие следа от прохода тяжёлого катка. Значение достигнутой плотности узнают по результатам лабораторного контроля.

Покрытия из горячей асфальтобетонной смеси можно устраивать сухую погоду весной и летом при температуре не ниже плюс 5 °С, осенью не ниже плюс 10 °С. Перед укладкой смеси основание тщательно очищают от пыли и грязи механической щёткой или сжатым воздухом. За 3 - 5 часов до укладки смеси основание обрабатывают битумной 7 эмульсией из расчёта 0,6 - 0,9 л/м (60 %-ная эмульсия) или жидким битумом - 0,3 - 0,4 л/м. Не позже чем за одну смену рабочую зону закрывают для движения, устраивают ограждения, дорожные знаки, подготавливают съезды и объезды. Выполняют разбивку в плане и высотную разбивку. Для постройки асфальтобетонного покрытия создают механизированное звено, в состав которого входят один-два самоходных укладчика, три-четыре самоходных катка, а так же вспомогательные машины и приспособления -механическая щётка, передвижной битумный котёл, передвижная жаровня, электростанция и т.д. По краям покрытия устанавливают боковые упоры из деревянных брусьев, из рельс узкой колеи или из прокатной стали корытного профиля. Асфальтобетонную смесь к месту укладки доставляют автомобилями-самосвалами. Привезённую смесь осматривают, замеряют температуру. Укладку горячих и тёплых смесей ведут укладчиками ДС-94, ДС-126. Укладку смеси ведут одним, реже двумя, укладчиками. Чтобы обеспечить хорошее сцепление смежных полос укладчик, при применении горячих смесей, должен работать участками длиной 30-100 метров. Толщину укладываемого слоя регулируют путём поднятия или опускания выглаживающей плиты асфальтоукладчика. Уложенную смесь предварительно уплотняют трамбующим брусом. Неуложенные узкие полосы, остающиеся на участках с уширением и т.д., заполняются смесью вручную. Поверхность уложенного слоя после прохода асфальтоукладчика должна быть ровной, однообразной, без разрывов и раковин. Уплотняют асфальтобетонные покрытия самоходными катками с гладкими металлическими вальцами - лёгкими массой 6-8 тонн, средними и тяжёлыми массой 8-18 тонн; самоходными пневмоколёсньми катками массой 16 и 30 тонн; виброкатками массой 4 и 8 тонн. Предварительно уплотняют лёгким катком по 2-3 прохода по одному следу, затем самоходным пневмоколёсным катком по 8-10 проходов; окончательное уплотнение" выполняют тяжёлым катком массой 10-18 тонн по 2-4 прохода по одному следу. Число проходов устанавливается пробной укаткой. Самоходные пневмоколёсные катки по сравнению с гладковальцовыми катками имеют большую производительность, уплотняют покрытие на большую глубину, за счёт изменения давления в шинах позволяют регулировать контактное давление, снижают дробимость щебня. При ручной укладке асфальтобетонных смесей число проходов катков по одному следу увеличивают на 20-30%. Уплотнять горячие смеси начинают при той температуре, при которой не образуется деформации: для многощебенистых смесей - при 140-160 °С, для малощебенистых при 100-130 С, для смесей нижнего слоя - при 120-140 °С. При использовании ПАВ или активированного минерального порошка температура при укатке должна быть снижена. Скорость движения катков при первых 5-6 проходах по одному следу - 1,5-2 км/час, затем 3-5 км/час, для виброкатков - до 2-3 км/час, для пневмоколёсных катков - до 5-8 км/час. Вальцы катков во избежание прилипания смеси к ним должны автоматически смачиваться водой. В недоступных для катков местах уплотнение выполняют металлическими трамбовками. Пористость на отдельных участках устраняют путём россыпи по поверхности покрытия асфальтобетонной смеси просеянной через сито 5 мм, с последующим уплотнением катками. При перерыве работ, например в конце второй смены, ступени между полосами должны быть минимальными. Швы должны быть перпендикулярны к оси дороги.


5. Охрана окружающей среды

При устройстве дорожной одежды разрабатывается план мероприятий по охране природы и рациональному использованию природных ресурсов предусматривающий:

обеспечение сохранности древесных насаждений и растительности, сохранение водоёмов и недопущение их засорения, рациональное использование территории строительства, своевременное строительство очистные сооружений (в частности пылеулавливающих и других установок), рациональное использование естественных ресурсов, обеспечение санитарного состояния территории строящихся объектов.

При строительстве покрытий и оснований с применением минеральных вяжущих необходимо предусматривать меры по защите окружающей среды. Использование зол уноса тепловых электростанций и других отходов промышленности даст возможность освободить от них значительные территории, которые можно использовать в сельском хозяйстве. Следует уделить внимание к борьбе с запылённостью сельскохозяйственных угодий. В меньшей степени запылённость бывает при приготовлении смесей в карьерах, при использовании однопроходных грунтосмесительных машин ДС-16Б. В большей степени запылённость происходит при применении дорожных фрез. Образование пыли происходит интенсивно при сухих грунтах, значительно меньше при грунтах оптимальной влажности. Наиболее опасна запылённость мелкими частицами извести (особенно не гашеной), цементом и др. При использовании для укрепления синтетических смол необходимо, чтобы пары этих веществ в меньшей степени попадали на окружающие поля. После промывки машин и ёмкостей вода не должна попадать на обочины, в боковые канавы и на соседние поля.

При работе АБЗ происходит большая запылённость окружающей территории минеральным порошком, мелкими фракциями песка и каменных материалов, а так же загрязнение дымом и сажей, выделяемых при сжигании мазута и каменного угля для обогревания сушильных барабанов, паровых котлов. Запылённость атмосферы происходит так же при погрузочно-разгрузочных операциях. Запылённость и загазованность территории вредно влияют на работающих, на жителей прилегающих к заводам населённых пунктов, на окружающую местность. Воздушные загрязнения включают кислоты, наносят вред зданиям и сооружениям Загрязнение атмосферы вызывает ухудшение климата. С целью защиты окружающей среды на АБЗ и битумных базах предусматривают ряд мероприятий. Асфальтобетонные заводы и битумные базы располагают с наветренной стороны от ближайших населённых" пунктов и отделяют от них санитарно-защитным барьером, обычно из лесонасаждений. Заводы и базы ограждают, чтобы на территорию не заходили посторонние люди и животные. Битумохранилища устраивают закрытого типа. Асфальтобетонные смесители оборудуют установками для очистки отходящих газов от пыли и сажи. В качестве топлива вместо мазута и каменного угля применяют бытовой газ, а для разогрева битума - электронагреватели, что значительно снижает загазованность окружающей среды. Двигатели внутреннего сгорания заменяют электродвигателями. Систематически проверяют загазованность воздуха, которая не должна превышать допустимых значений.

При выполнении работ на дороге вяжущие материалы, активаторы, ПАВ не должны попадать на прилегающие к дороге земли, в канавы, чтобы не загрязнять поверхностные воды, стекающие по канавам. На объездах, обычно грунтовых, используемых для движения транспортных средств в период строительства, во избежание образования пыли и загрязнения соседних полей необходимо систематически производить обеспыливание дороги путём розлива растворов хлоридных солей.


6. Контроль качества работ и охрана труда

Перед устройством дополнительных слоев следует проверить правильность поперечного профиля земляного полотна, степень его уплотнения. При устройстве дополнительных слоев оснований необходимо проверять не реже чем через 100 м, а так же во всех сомнительных случаях: качество применяемого материала путём взятия проб и испытания их в лаборатории; качество планировки земляного полотна и соответствия поперечного уклона проектному, толщину слоя материала у оси и кромок проезжей части; степень уплотнения материала путём определения плотности образцов и сопоставлением их с требуемой плотностью;

ровность и поперечный профиль построенного дополнительного слоя.

При устройстве нижнего слоя основания из шлакового щебня контроль должен сопровождать каждую технологическую операцию. Качество материала проверяет лаборатория путём отбора проб и последующего их испытания, а так же внешним осмотром. Текущий контроль качества материалов производят не реже 1 раза в неделю, но не менее чем на 1 км строящегося основания. Материал не должен быть загрязнён посторонними примесями. Проверяют гранулометрический состав оптимальных смесей, наличие и свойств мелкозёма (частиц мельче 0,05 мм). Пробы берут как из материала, ещё не уложенного в покрытие, так и непосредственно из покрытия. В процессе работ проверяют ширину основания, толщину слоя, правильность укатки, норму разлива воды. Систематически проверяют ровность и правильность поперечного профиля в процессе укатки, производят исправление дефектных мест. Соответствие техническому проекту проверяют: продольный профиль - контрольным нивелированием; поперечный профиль -шаблоном на каждом пикете; ровность поверхности покрытия - 3-метровой или передвижной многоопорной рейкой; толщину слоя - по замерам в лунках, пробиваемых на трёх поперечниках на каждом километре; качество уплотнения - путём прохода тяжёлого катка массой 10-12 тонн, при этом на поверхности не должно оставаться заметного на глаз следа.

При строительстве оснований из каменных материалов, укреплённых минеральными вяжущими, контроль возлагается на инженерно-технических работников, которые руководят производством, а так же на работников лаборатории. Контролю подлежат приготовление смеси на базе или заводе, устройство основания и проверка качества готового основания. При приготовлении смесей проверяют качество применяемых материалов и правильность их хранения. В процессе работы качество материалов контролируют не реже 1 раза в неделю, но не реже чем на каждом километре строящегося основания. Состав смеси подбирает центральная лаборатория, утверждает главный инженер строительства. Точность работы дозаторов смесительной установки проверяют не реже 1 раза в неделю. Качество приготовленной смеси контролируют путём взятия проб смеси, изготовления и испытания образцов: для определения прочности на сжатие - каждую смену; для испытания на раскол (изгиб) из каждой 1000 м 3 смеси; для испытания на морозостойкость - на каждые 5000 м 3 смеси. При устройстве основания систематически проверяют толщину слоя смеси, поперечные уклоны - шаблоном, ровность - 3-метровой рейкой, принятую схему укатки, число проходов катков по одному следу, окончание укатки. При уходе за основанием, построенном с применением цемента, контролируют норму разлива плёнкообразующих материалов, время розлива, качества плёнки на основании. Основание должно быть однородным, плотным, иметь ровную и чистую поверхность. Контролируют сроки начала движения транспортных средств по построенному основанию, время укладки вышележащего слоя, качество технической документации по приготовлению смесей, устройства основания и его приёмке.

При строительстве асфальтобетонных покрытий техническому контролю подлежат:

приготовление асфальтобетонной смеси на заводе, устройство асфальтобетонного покрытия, готовое покрытие. При приготовлении смесей контролируют: качество применяемых материалов и битума, точность дозирования, контроль термического режима приготовления смеси, качества готовой смеси. На каждый автомобиль со смесью лаборатория завода выдаёт паспорт, в котором указывается вид смеси (горячая, тёплая), тип смеси по содержанию щебня, по гранулометрическому составу (мелкозернистая, среднезернистая, крупнозернистая), номер состава смеси, её масса, температура, фамилия лица, ответственного за выпуск смеси. Привезённая на дорогу смесь должна быть проверена мастером или прорабом. При этом проверяют её температуру, равномерность перемешивания, пластичность. В смеси не должно быть сгустков битума, частиц минерального материала, не обработанных вяжущим. В кузове автомобиля смесь должна размещаться в виде сплюснутого конуса. Перед укладкой смеси проверяют ровность, плотность и чистоту основания, подгрунтовку, установку боковых упоров. В процессе укладки асфальтобетонной смеси проверяют: толщину укладываемого слоя -металлической линейкой, поперечный уклон - трёхметровой рейкой, которую прикладывают к покрытию вдоль оси дороги. Просвет под рейкой замеряют металлическим клином, размеченным через каждый миллиметр по высоте 0-20 мм. Контролируют время начала и окончания укатки, число и правильность прохода катков. Обнаруженные недостатки при укладке и укатке немедленно устраняют. Участки покрытия, имеющие после уплотнения большую пористость или на которых оказалась недоброкачественная смесь, вырубают, закладывают хорошей смесью и уплотняют катками. Проверяют тщательность устройства поперечных и продольных сопряжении, правильность обрезки или обрубки кромок проезжей части, регулирование движения по построенному участку до окончания процесса формирования покрытия. В построенном покрытии проверяют: коэффициент уплотнения и толщины слоев, прочность сцепления слоев между собой и с основанием, соответствие показателей свойств асфальтобетона техническим требованиям; шероховатость покрытия; коэффициент сцепления шин автомобилей с покрытием. Для контроля качества асфальтобетона из покрытия отбирают керны или вырубки и испытывают их в переформированном и непереформированном со-стояниях. Пробы берут на покрытиях из горячего и тёплого асфальтобетона через 10 суток после его устройства и из холодного - не раньше, чем через 30 суток после устройства покрытия и открытия движения по нему. Пробы отбираются из расчёта: при ширине покрытия не более 7 метров - три пробы на 1 км; при ширине покрытия более 7 метров - 3 пробы с каждых 7000 м 2 . Керны и вырубки должны быть взяты из разных мест: из середины полосы движения, в непосредственной близости от сопряжения двух участков, а так же там, где покрытие меньше уплотнено движением. Места взятия проб необходимо заделать асфальтобетонной смесью. Степень уплотнения покрытия оценивают коэффициентом уплотнения покрытия который определяется как отношение плотности отобранных из покрытия вырубок к плотности переформированного образца уплотнённого стандартизированной нагрузкой. Коэффициент уплотнения должен быть не ниже 0,98.

При постройке оснований из каменных материалов, обработанных минеральными вяжущими, необходимо соблюдать правила охраны труда при приготовлении смесей на базах и при постройке оснований на дороге. К работе на смесительной установке допускаются лица, достигшие 18-летнего возраста, прошедшие курс обучения, имеющие право на управление смесительной установкой и её агрегатами и ознакомленные с правилами техники безопасности. Обслуживающий персонал установки должен быть обеспечен спецодеждой - комбинезонами, головными уборами, брезентовыми рукавицами, пылезащитными очками и кожаной обувью. При работе в ночное время все рабочие места, проходы и проезды освещают. В начале каждой смены осматривают, проверяют исправность механизмов, наличие защитных ограждений кожухов, отдельных механизмов, ограждений лестниц, площадок, перил, наличие пожарного инвентаря, проверяют освещение. Результаты осмотра должны быть записаны в книгу сдачи и приёма дежурств. Течки транспортёра подачи каменных материалов обслуживают со специальной площадки, расположенной с боку от бункера и снабженной по периметру перилами высотой не менее 1 метра. Перед пуском установки и её агрегатов машинист смесителя должен оповестить обслуживающий персонал о начале работы звуковым сигналом. На смесительной установке должны быть и световые сигналы. Электропроводку смесительной установки выполняют изолированными проводами, которые подвешивают на надёжных опорах на высоте (с учётом провисания) не менее 2,5 метров над рабочим местом, 3 метра над проходами и 5 метров над проездами. Все металлические части смесительной установки заземляют. Все лестницы, подходы, площадки и другие рабочие места необходимо содержать в чистоте. При постройке оснований из каменных материалов должны соблюдаться правила техники безопасности, установленные для работы дорожных машин, в том числе:

(ДС-8, ДС-54), катков, автогудронаторов, а так же при работе в тёмное время суток и в зимнее время.

При постройке покрытий и оснований из неукреплённых каменных материалов необходимо выполнять требования правил техники безопасности, предъявляемые к работе с машинами, перемещающимися в процессе работы, а так же при работе в тёмное время суток и в зимнее время. Строительство ведётся обычно в две смены, места работы на дороге и в карьере должны быть освещены светильниками или прожекторами. Независимо от этого дорожные машины оборудуют освещением с переключением света на ближний и дальний. Машины работающие челночным способом должны иметь две задние фары. В зимнее время для обогрева, отдыха и приёма пищи оборудуют отапливаемые помещения, размещённые вблизи работ, но не далее 500 метров. Перевозка людей в зимнее время разрешена только автобусами или отапливаемыми машинами. Отопление кабин машинистов должно быть рассчитано на поддержание температуры не ниже +15 С.

До начала работ по строительству асфальтобетонного покрытия участок ограждают и оформляют объезд, по которому направляют движение. Ввиду работы машин-асфальтоукладчиков, катков и грузовых автомобилей, для рабочих, занятых на укладке, намечают безопасные места для их работы, а так же схему вывода и ввода в зону работ асфальтоукладчиков. Все рабочие должны иметь спецодежду установленного образца и обувь для работы с горячими материалами, рукавицы. Запрещается работа машин при неисправном звуковом сигнале. Катки должны быть оборудованы механизированным устройством для смазки вальцов. При одновременной и совместной работе двух и более асфальтоукладчиков дистанция между ними должна быть не менее 10 метров. При работе катков и асфальтоукладчиков для безопасности расстояние между ними должно быть не менее 10 метров. Двигатели катков, асфальтоукладчиков и других машин могут включать только их машинисты, соблюдая соответствующие правила техники безопасности. Все инструменты, применяемые при отделке асфальтобетонного покрытия, подогревают в передвижной жаровне. Запрещается подогревание инструмента на кострах. Бригада рабочих, занятых на постройке асфальтобетонного покрытия, должна быть обеспечена передвижным вагоном, который служит укрытием в непогоду, местом хранения аптечки, бака с питьевой водой, инструментов. При длительных перерывах в работе (6 часов и более) асфальтоукладчики и катки очищают от остатков смеси, осматривают механизмы и устраняют мелкие неполадки. Рабочих и инженерно-технических работников допускают к работе после прохождения инструктажа и проверке знаний по технике безопасности, противопожарной защите и правил личной гигиены, а так же умения оказывать первую медицинскую помощь при несчастном случае.


Литература

1. Строительство автодорог: справочник инженера-дорожника: (В.А. Бочник, М.И. Витман, Е.Н. Зейгер и др.): Под редакцией В.А. Бочника – М. Транспорт,1980 г. – 311с.

2. Строительство автодорог (учебник для ВУЗов в двух томах): Под ред. В.К. Непрасова – М., Транспорт, 1980 г.

3. Строительство автодорог (уч. для ВУЗов) Под ред. И.И. Иванова – М., Транспорт, 1969 – 1970 г.г.

4. Строительство и эксплуатация автодорог (уч. для ВУЗов) – М., Транспорт, 1972г. – 288с.

5. Строительство сельскохозяйственных дорог. Под ред. Слабуцкого – М., Транспорт, 1982г. – 296с.

6. СниП. Сборник Е17. стр. а/д. Официальное издание – Госстрой СССР, 1987г. – 48с.

7. Общее производство нормы расхода материалов в строительстве. Сборник 29. дорожные работы, М., Строиздат, 1985г. – 56с.